1 // Random number extensions -*- C++ -*-
3 // Copyright (C) 2012-2014 Free Software Foundation, Inc.
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
25 /** @file ext/random.tcc
26 * This is an internal header file, included by other library headers.
27 * Do not attempt to use it directly. @headername{ext/random}
30 #ifndef _EXT_RANDOM_TCC
31 #define _EXT_RANDOM_TCC 1
33 #pragma GCC system_header
35 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
37 _GLIBCXX_BEGIN_NAMESPACE_VERSION
39 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
41 template<typename _UIntType, size_t __m,
42 size_t __pos1, size_t __sl1, size_t __sl2,
43 size_t __sr1, size_t __sr2,
44 uint32_t __msk1, uint32_t __msk2,
45 uint32_t __msk3, uint32_t __msk4,
46 uint32_t __parity1, uint32_t __parity2,
47 uint32_t __parity3, uint32_t __parity4>
48 void simd_fast_mersenne_twister_engine<_UIntType, __m,
49 __pos1, __sl1, __sl2, __sr1, __sr2,
50 __msk1, __msk2, __msk3, __msk4,
51 __parity1, __parity2, __parity3,
53 seed(_UIntType __seed)
55 _M_state32[0] = static_cast<uint32_t>(__seed);
56 for (size_t __i = 1; __i < _M_nstate32; ++__i)
57 _M_state32[__i] = (1812433253UL
58 * (_M_state32[__i - 1] ^ (_M_state32[__i - 1] >> 30))
61 _M_period_certification();
67 inline uint32_t _Func1(uint32_t __x)
69 return (__x ^ (__x >> 27)) * UINT32_C(1664525);
72 inline uint32_t _Func2(uint32_t __x)
74 return (__x ^ (__x >> 27)) * UINT32_C(1566083941);
80 template<typename _UIntType, size_t __m,
81 size_t __pos1, size_t __sl1, size_t __sl2,
82 size_t __sr1, size_t __sr2,
83 uint32_t __msk1, uint32_t __msk2,
84 uint32_t __msk3, uint32_t __msk4,
85 uint32_t __parity1, uint32_t __parity2,
86 uint32_t __parity3, uint32_t __parity4>
87 template<typename _Sseq>
88 typename std::enable_if<std::is_class<_Sseq>::value>::type
89 simd_fast_mersenne_twister_engine<_UIntType, __m,
90 __pos1, __sl1, __sl2, __sr1, __sr2,
91 __msk1, __msk2, __msk3, __msk4,
92 __parity1, __parity2, __parity3,
98 if (_M_nstate32 >= 623)
100 else if (_M_nstate32 >= 68)
102 else if (_M_nstate32 >= 39)
106 const size_t __mid = (_M_nstate32 - __lag) / 2;
108 std::fill(_M_state32, _M_state32 + _M_nstate32, UINT32_C(0x8b8b8b8b));
109 uint32_t __arr[_M_nstate32];
110 __q.generate(__arr + 0, __arr + _M_nstate32);
112 uint32_t __r = _Func1(_M_state32[0] ^ _M_state32[__mid]
113 ^ _M_state32[_M_nstate32 - 1]);
114 _M_state32[__mid] += __r;
116 _M_state32[__mid + __lag] += __r;
119 for (size_t __i = 1, __j = 0; __j < _M_nstate32; ++__j)
121 __r = _Func1(_M_state32[__i]
122 ^ _M_state32[(__i + __mid) % _M_nstate32]
123 ^ _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]);
124 _M_state32[(__i + __mid) % _M_nstate32] += __r;
125 __r += __arr[__j] + __i;
126 _M_state32[(__i + __mid + __lag) % _M_nstate32] += __r;
127 _M_state32[__i] = __r;
128 __i = (__i + 1) % _M_nstate32;
130 for (size_t __j = 0; __j < _M_nstate32; ++__j)
132 const size_t __i = (__j + 1) % _M_nstate32;
133 __r = _Func2(_M_state32[__i]
134 + _M_state32[(__i + __mid) % _M_nstate32]
135 + _M_state32[(__i + _M_nstate32 - 1) % _M_nstate32]);
136 _M_state32[(__i + __mid) % _M_nstate32] ^= __r;
138 _M_state32[(__i + __mid + __lag) % _M_nstate32] ^= __r;
139 _M_state32[__i] = __r;
143 _M_period_certification();
147 template<typename _UIntType, size_t __m,
148 size_t __pos1, size_t __sl1, size_t __sl2,
149 size_t __sr1, size_t __sr2,
150 uint32_t __msk1, uint32_t __msk2,
151 uint32_t __msk3, uint32_t __msk4,
152 uint32_t __parity1, uint32_t __parity2,
153 uint32_t __parity3, uint32_t __parity4>
154 void simd_fast_mersenne_twister_engine<_UIntType, __m,
155 __pos1, __sl1, __sl2, __sr1, __sr2,
156 __msk1, __msk2, __msk3, __msk4,
157 __parity1, __parity2, __parity3,
159 _M_period_certification(void)
161 static const uint32_t __parity[4] = { __parity1, __parity2,
162 __parity3, __parity4 };
163 uint32_t __inner = 0;
164 for (size_t __i = 0; __i < 4; ++__i)
165 if (__parity[__i] != 0)
166 __inner ^= _M_state32[__i] & __parity[__i];
168 if (__builtin_parity(__inner) & 1)
170 for (size_t __i = 0; __i < 4; ++__i)
171 if (__parity[__i] != 0)
173 _M_state32[__i] ^= 1 << (__builtin_ffs(__parity[__i]) - 1);
176 __builtin_unreachable();
180 template<typename _UIntType, size_t __m,
181 size_t __pos1, size_t __sl1, size_t __sl2,
182 size_t __sr1, size_t __sr2,
183 uint32_t __msk1, uint32_t __msk2,
184 uint32_t __msk3, uint32_t __msk4,
185 uint32_t __parity1, uint32_t __parity2,
186 uint32_t __parity3, uint32_t __parity4>
187 void simd_fast_mersenne_twister_engine<_UIntType, __m,
188 __pos1, __sl1, __sl2, __sr1, __sr2,
189 __msk1, __msk2, __msk3, __msk4,
190 __parity1, __parity2, __parity3,
192 discard(unsigned long long __z)
194 while (__z > state_size - _M_pos)
196 __z -= state_size - _M_pos;
205 #ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_GEN_READ
209 template<size_t __shift>
210 inline void __rshift(uint32_t *__out, const uint32_t *__in)
212 uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32)
213 | static_cast<uint64_t>(__in[2]));
214 uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32)
215 | static_cast<uint64_t>(__in[0]));
217 uint64_t __oh = __th >> (__shift * 8);
218 uint64_t __ol = __tl >> (__shift * 8);
219 __ol |= __th << (64 - __shift * 8);
220 __out[1] = static_cast<uint32_t>(__ol >> 32);
221 __out[0] = static_cast<uint32_t>(__ol);
222 __out[3] = static_cast<uint32_t>(__oh >> 32);
223 __out[2] = static_cast<uint32_t>(__oh);
227 template<size_t __shift>
228 inline void __lshift(uint32_t *__out, const uint32_t *__in)
230 uint64_t __th = ((static_cast<uint64_t>(__in[3]) << 32)
231 | static_cast<uint64_t>(__in[2]));
232 uint64_t __tl = ((static_cast<uint64_t>(__in[1]) << 32)
233 | static_cast<uint64_t>(__in[0]));
235 uint64_t __oh = __th << (__shift * 8);
236 uint64_t __ol = __tl << (__shift * 8);
237 __oh |= __tl >> (64 - __shift * 8);
238 __out[1] = static_cast<uint32_t>(__ol >> 32);
239 __out[0] = static_cast<uint32_t>(__ol);
240 __out[3] = static_cast<uint32_t>(__oh >> 32);
241 __out[2] = static_cast<uint32_t>(__oh);
245 template<size_t __sl1, size_t __sl2, size_t __sr1, size_t __sr2,
246 uint32_t __msk1, uint32_t __msk2, uint32_t __msk3, uint32_t __msk4>
247 inline void __recursion(uint32_t *__r,
248 const uint32_t *__a, const uint32_t *__b,
249 const uint32_t *__c, const uint32_t *__d)
254 __lshift<__sl2>(__x, __a);
255 __rshift<__sr2>(__y, __c);
256 __r[0] = (__a[0] ^ __x[0] ^ ((__b[0] >> __sr1) & __msk1)
257 ^ __y[0] ^ (__d[0] << __sl1));
258 __r[1] = (__a[1] ^ __x[1] ^ ((__b[1] >> __sr1) & __msk2)
259 ^ __y[1] ^ (__d[1] << __sl1));
260 __r[2] = (__a[2] ^ __x[2] ^ ((__b[2] >> __sr1) & __msk3)
261 ^ __y[2] ^ (__d[2] << __sl1));
262 __r[3] = (__a[3] ^ __x[3] ^ ((__b[3] >> __sr1) & __msk4)
263 ^ __y[3] ^ (__d[3] << __sl1));
269 template<typename _UIntType, size_t __m,
270 size_t __pos1, size_t __sl1, size_t __sl2,
271 size_t __sr1, size_t __sr2,
272 uint32_t __msk1, uint32_t __msk2,
273 uint32_t __msk3, uint32_t __msk4,
274 uint32_t __parity1, uint32_t __parity2,
275 uint32_t __parity3, uint32_t __parity4>
276 void simd_fast_mersenne_twister_engine<_UIntType, __m,
277 __pos1, __sl1, __sl2, __sr1, __sr2,
278 __msk1, __msk2, __msk3, __msk4,
279 __parity1, __parity2, __parity3,
283 const uint32_t *__r1 = &_M_state32[_M_nstate32 - 8];
284 const uint32_t *__r2 = &_M_state32[_M_nstate32 - 4];
285 static constexpr size_t __pos1_32 = __pos1 * 4;
288 for (__i = 0; __i < _M_nstate32 - __pos1_32; __i += 4)
290 __recursion<__sl1, __sl2, __sr1, __sr2,
291 __msk1, __msk2, __msk3, __msk4>
292 (&_M_state32[__i], &_M_state32[__i],
293 &_M_state32[__i + __pos1_32], __r1, __r2);
295 __r2 = &_M_state32[__i];
298 for (; __i < _M_nstate32; __i += 4)
300 __recursion<__sl1, __sl2, __sr1, __sr2,
301 __msk1, __msk2, __msk3, __msk4>
302 (&_M_state32[__i], &_M_state32[__i],
303 &_M_state32[__i + __pos1_32 - _M_nstate32], __r1, __r2);
305 __r2 = &_M_state32[__i];
313 #ifndef _GLIBCXX_OPT_HAVE_RANDOM_SFMT_OPERATOREQUAL
314 template<typename _UIntType, size_t __m,
315 size_t __pos1, size_t __sl1, size_t __sl2,
316 size_t __sr1, size_t __sr2,
317 uint32_t __msk1, uint32_t __msk2,
318 uint32_t __msk3, uint32_t __msk4,
319 uint32_t __parity1, uint32_t __parity2,
320 uint32_t __parity3, uint32_t __parity4>
322 operator==(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
323 __m, __pos1, __sl1, __sl2, __sr1, __sr2,
324 __msk1, __msk2, __msk3, __msk4,
325 __parity1, __parity2, __parity3, __parity4>& __lhs,
326 const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
327 __m, __pos1, __sl1, __sl2, __sr1, __sr2,
328 __msk1, __msk2, __msk3, __msk4,
329 __parity1, __parity2, __parity3, __parity4>& __rhs)
331 typedef __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
332 __m, __pos1, __sl1, __sl2, __sr1, __sr2,
333 __msk1, __msk2, __msk3, __msk4,
334 __parity1, __parity2, __parity3, __parity4> __engine;
335 return (std::equal(__lhs._M_stateT,
336 __lhs._M_stateT + __engine::state_size,
338 && __lhs._M_pos == __rhs._M_pos);
342 template<typename _UIntType, size_t __m,
343 size_t __pos1, size_t __sl1, size_t __sl2,
344 size_t __sr1, size_t __sr2,
345 uint32_t __msk1, uint32_t __msk2,
346 uint32_t __msk3, uint32_t __msk4,
347 uint32_t __parity1, uint32_t __parity2,
348 uint32_t __parity3, uint32_t __parity4,
349 typename _CharT, typename _Traits>
350 std::basic_ostream<_CharT, _Traits>&
351 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
352 const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
353 __m, __pos1, __sl1, __sl2, __sr1, __sr2,
354 __msk1, __msk2, __msk3, __msk4,
355 __parity1, __parity2, __parity3, __parity4>& __x)
357 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
358 typedef typename __ostream_type::ios_base __ios_base;
360 const typename __ios_base::fmtflags __flags = __os.flags();
361 const _CharT __fill = __os.fill();
362 const _CharT __space = __os.widen(' ');
363 __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
366 for (size_t __i = 0; __i < __x._M_nstate32; ++__i)
367 __os << __x._M_state32[__i] << __space;
376 template<typename _UIntType, size_t __m,
377 size_t __pos1, size_t __sl1, size_t __sl2,
378 size_t __sr1, size_t __sr2,
379 uint32_t __msk1, uint32_t __msk2,
380 uint32_t __msk3, uint32_t __msk4,
381 uint32_t __parity1, uint32_t __parity2,
382 uint32_t __parity3, uint32_t __parity4,
383 typename _CharT, typename _Traits>
384 std::basic_istream<_CharT, _Traits>&
385 operator>>(std::basic_istream<_CharT, _Traits>& __is,
386 __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
387 __m, __pos1, __sl1, __sl2, __sr1, __sr2,
388 __msk1, __msk2, __msk3, __msk4,
389 __parity1, __parity2, __parity3, __parity4>& __x)
391 typedef std::basic_istream<_CharT, _Traits> __istream_type;
392 typedef typename __istream_type::ios_base __ios_base;
394 const typename __ios_base::fmtflags __flags = __is.flags();
395 __is.flags(__ios_base::dec | __ios_base::skipws);
397 for (size_t __i = 0; __i < __x._M_nstate32; ++__i)
398 __is >> __x._M_state32[__i];
405 #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
408 * Iteration method due to M.D. J<o:>hnk.
410 * M.D. J<o:>hnk, Erzeugung von betaverteilten und gammaverteilten
411 * Zufallszahlen, Metrika, Volume 8, 1964
413 template<typename _RealType>
414 template<typename _UniformRandomNumberGenerator>
415 typename beta_distribution<_RealType>::result_type
416 beta_distribution<_RealType>::
417 operator()(_UniformRandomNumberGenerator& __urng,
418 const param_type& __param)
420 std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
423 result_type __x, __y;
426 __x = std::exp(std::log(__aurng()) / __param.alpha());
427 __y = std::exp(std::log(__aurng()) / __param.beta());
429 while (__x + __y > result_type(1));
431 return __x / (__x + __y);
434 template<typename _RealType>
435 template<typename _OutputIterator,
436 typename _UniformRandomNumberGenerator>
438 beta_distribution<_RealType>::
439 __generate_impl(_OutputIterator __f, _OutputIterator __t,
440 _UniformRandomNumberGenerator& __urng,
441 const param_type& __param)
443 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
445 std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
450 result_type __x, __y;
453 __x = std::exp(std::log(__aurng()) / __param.alpha());
454 __y = std::exp(std::log(__aurng()) / __param.beta());
456 while (__x + __y > result_type(1));
458 *__f++ = __x / (__x + __y);
462 template<typename _RealType, typename _CharT, typename _Traits>
463 std::basic_ostream<_CharT, _Traits>&
464 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
465 const __gnu_cxx::beta_distribution<_RealType>& __x)
467 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
468 typedef typename __ostream_type::ios_base __ios_base;
470 const typename __ios_base::fmtflags __flags = __os.flags();
471 const _CharT __fill = __os.fill();
472 const std::streamsize __precision = __os.precision();
473 const _CharT __space = __os.widen(' ');
474 __os.flags(__ios_base::scientific | __ios_base::left);
476 __os.precision(std::numeric_limits<_RealType>::max_digits10);
478 __os << __x.alpha() << __space << __x.beta();
482 __os.precision(__precision);
486 template<typename _RealType, typename _CharT, typename _Traits>
487 std::basic_istream<_CharT, _Traits>&
488 operator>>(std::basic_istream<_CharT, _Traits>& __is,
489 __gnu_cxx::beta_distribution<_RealType>& __x)
491 typedef std::basic_istream<_CharT, _Traits> __istream_type;
492 typedef typename __istream_type::ios_base __ios_base;
494 const typename __ios_base::fmtflags __flags = __is.flags();
495 __is.flags(__ios_base::dec | __ios_base::skipws);
497 _RealType __alpha_val, __beta_val;
498 __is >> __alpha_val >> __beta_val;
499 __x.param(typename __gnu_cxx::beta_distribution<_RealType>::
500 param_type(__alpha_val, __beta_val));
507 template<std::size_t _Dimen, typename _RealType>
508 template<typename _InputIterator1, typename _InputIterator2>
510 normal_mv_distribution<_Dimen, _RealType>::param_type::
511 _M_init_full(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
512 _InputIterator2 __varcovbegin, _InputIterator2 __varcovend)
514 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
515 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
516 std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
517 _M_mean.end(), _RealType(0));
519 // Perform the Cholesky decomposition
520 auto __w = _M_t.begin();
521 for (size_t __j = 0; __j < _Dimen; ++__j)
523 _RealType __sum = _RealType(0);
525 auto __slitbegin = __w;
526 auto __cit = _M_t.begin();
527 for (size_t __i = 0; __i < __j; ++__i)
529 auto __slit = __slitbegin;
530 _RealType __s = *__varcovbegin++;
531 for (size_t __k = 0; __k < __i; ++__k)
532 __s -= *__slit++ * *__cit++;
534 *__w++ = __s /= *__cit++;
538 __sum = *__varcovbegin - __sum;
539 if (__builtin_expect(__sum <= _RealType(0), 0))
540 std::__throw_runtime_error(__N("normal_mv_distribution::"
541 "param_type::_M_init_full"));
542 *__w++ = std::sqrt(__sum);
544 std::advance(__varcovbegin, _Dimen - __j);
548 template<std::size_t _Dimen, typename _RealType>
549 template<typename _InputIterator1, typename _InputIterator2>
551 normal_mv_distribution<_Dimen, _RealType>::param_type::
552 _M_init_lower(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
553 _InputIterator2 __varcovbegin, _InputIterator2 __varcovend)
555 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
556 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
557 std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
558 _M_mean.end(), _RealType(0));
560 // Perform the Cholesky decomposition
561 auto __w = _M_t.begin();
562 for (size_t __j = 0; __j < _Dimen; ++__j)
564 _RealType __sum = _RealType(0);
566 auto __slitbegin = __w;
567 auto __cit = _M_t.begin();
568 for (size_t __i = 0; __i < __j; ++__i)
570 auto __slit = __slitbegin;
571 _RealType __s = *__varcovbegin++;
572 for (size_t __k = 0; __k < __i; ++__k)
573 __s -= *__slit++ * *__cit++;
575 *__w++ = __s /= *__cit++;
579 __sum = *__varcovbegin++ - __sum;
580 if (__builtin_expect(__sum <= _RealType(0), 0))
581 std::__throw_runtime_error(__N("normal_mv_distribution::"
582 "param_type::_M_init_full"));
583 *__w++ = std::sqrt(__sum);
587 template<std::size_t _Dimen, typename _RealType>
588 template<typename _InputIterator1, typename _InputIterator2>
590 normal_mv_distribution<_Dimen, _RealType>::param_type::
591 _M_init_diagonal(_InputIterator1 __meanbegin, _InputIterator1 __meanend,
592 _InputIterator2 __varbegin, _InputIterator2 __varend)
594 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>)
595 __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>)
596 std::fill(std::copy(__meanbegin, __meanend, _M_mean.begin()),
597 _M_mean.end(), _RealType(0));
599 auto __w = _M_t.begin();
601 while (__varbegin != __varend)
603 std::fill_n(__w, __step, _RealType(0));
605 if (__builtin_expect(*__varbegin < _RealType(0), 0))
606 std::__throw_runtime_error(__N("normal_mv_distribution::"
607 "param_type::_M_init_diagonal"));
608 *__w++ = std::sqrt(*__varbegin++);
612 template<std::size_t _Dimen, typename _RealType>
613 template<typename _UniformRandomNumberGenerator>
614 typename normal_mv_distribution<_Dimen, _RealType>::result_type
615 normal_mv_distribution<_Dimen, _RealType>::
616 operator()(_UniformRandomNumberGenerator& __urng,
617 const param_type& __param)
621 _M_nd.__generate(__ret.begin(), __ret.end(), __urng);
623 auto __t_it = __param._M_t.crbegin();
624 for (size_t __i = _Dimen; __i > 0; --__i)
626 _RealType __sum = _RealType(0);
627 for (size_t __j = __i; __j > 0; --__j)
628 __sum += __ret[__j - 1] * *__t_it++;
629 __ret[__i - 1] = __sum;
635 template<std::size_t _Dimen, typename _RealType>
636 template<typename _ForwardIterator, typename _UniformRandomNumberGenerator>
638 normal_mv_distribution<_Dimen, _RealType>::
639 __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
640 _UniformRandomNumberGenerator& __urng,
641 const param_type& __param)
643 __glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
646 *__f++ = this->operator()(__urng, __param);
649 template<size_t _Dimen, typename _RealType>
651 operator==(const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
653 const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
656 return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd;
659 template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits>
660 std::basic_ostream<_CharT, _Traits>&
661 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
662 const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x)
664 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
665 typedef typename __ostream_type::ios_base __ios_base;
667 const typename __ios_base::fmtflags __flags = __os.flags();
668 const _CharT __fill = __os.fill();
669 const std::streamsize __precision = __os.precision();
670 const _CharT __space = __os.widen(' ');
671 __os.flags(__ios_base::scientific | __ios_base::left);
673 __os.precision(std::numeric_limits<_RealType>::max_digits10);
675 auto __mean = __x._M_param.mean();
676 for (auto __it : __mean)
677 __os << __it << __space;
678 auto __t = __x._M_param.varcov();
679 for (auto __it : __t)
680 __os << __it << __space;
686 __os.precision(__precision);
690 template<size_t _Dimen, typename _RealType, typename _CharT, typename _Traits>
691 std::basic_istream<_CharT, _Traits>&
692 operator>>(std::basic_istream<_CharT, _Traits>& __is,
693 __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>& __x)
695 typedef std::basic_istream<_CharT, _Traits> __istream_type;
696 typedef typename __istream_type::ios_base __ios_base;
698 const typename __ios_base::fmtflags __flags = __is.flags();
699 __is.flags(__ios_base::dec | __ios_base::skipws);
701 std::array<_RealType, _Dimen> __mean;
702 for (auto& __it : __mean)
704 std::array<_RealType, _Dimen * (_Dimen + 1) / 2> __varcov;
705 for (auto& __it : __varcov)
710 __x.param(typename normal_mv_distribution<_Dimen, _RealType>::
711 param_type(__mean.begin(), __mean.end(),
712 __varcov.begin(), __varcov.end()));
719 template<typename _RealType>
720 template<typename _OutputIterator,
721 typename _UniformRandomNumberGenerator>
723 rice_distribution<_RealType>::
724 __generate_impl(_OutputIterator __f, _OutputIterator __t,
725 _UniformRandomNumberGenerator& __urng,
726 const param_type& __p)
728 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
732 typename std::normal_distribution<result_type>::param_type
733 __px(__p.nu(), __p.sigma()), __py(result_type(0), __p.sigma());
734 result_type __x = this->_M_ndx(__px, __urng);
735 result_type __y = this->_M_ndy(__py, __urng);
736 #if _GLIBCXX_USE_C99_MATH_TR1
737 *__f++ = std::hypot(__x, __y);
739 *__f++ = std::sqrt(__x * __x + __y * __y);
744 template<typename _RealType, typename _CharT, typename _Traits>
745 std::basic_ostream<_CharT, _Traits>&
746 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
747 const rice_distribution<_RealType>& __x)
749 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
750 typedef typename __ostream_type::ios_base __ios_base;
752 const typename __ios_base::fmtflags __flags = __os.flags();
753 const _CharT __fill = __os.fill();
754 const std::streamsize __precision = __os.precision();
755 const _CharT __space = __os.widen(' ');
756 __os.flags(__ios_base::scientific | __ios_base::left);
758 __os.precision(std::numeric_limits<_RealType>::max_digits10);
760 __os << __x.nu() << __space << __x.sigma();
761 __os << __space << __x._M_ndx;
762 __os << __space << __x._M_ndy;
766 __os.precision(__precision);
770 template<typename _RealType, typename _CharT, typename _Traits>
771 std::basic_istream<_CharT, _Traits>&
772 operator>>(std::basic_istream<_CharT, _Traits>& __is,
773 rice_distribution<_RealType>& __x)
775 typedef std::basic_istream<_CharT, _Traits> __istream_type;
776 typedef typename __istream_type::ios_base __ios_base;
778 const typename __ios_base::fmtflags __flags = __is.flags();
779 __is.flags(__ios_base::dec | __ios_base::skipws);
781 _RealType __nu_val, __sigma_val;
782 __is >> __nu_val >> __sigma_val;
785 __x.param(typename rice_distribution<_RealType>::
786 param_type(__nu_val, __sigma_val));
793 template<typename _RealType>
794 template<typename _OutputIterator,
795 typename _UniformRandomNumberGenerator>
797 nakagami_distribution<_RealType>::
798 __generate_impl(_OutputIterator __f, _OutputIterator __t,
799 _UniformRandomNumberGenerator& __urng,
800 const param_type& __p)
802 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
804 typename std::gamma_distribution<result_type>::param_type
805 __pg(__p.mu(), __p.omega() / __p.mu());
807 *__f++ = std::sqrt(this->_M_gd(__pg, __urng));
810 template<typename _RealType, typename _CharT, typename _Traits>
811 std::basic_ostream<_CharT, _Traits>&
812 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
813 const nakagami_distribution<_RealType>& __x)
815 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
816 typedef typename __ostream_type::ios_base __ios_base;
818 const typename __ios_base::fmtflags __flags = __os.flags();
819 const _CharT __fill = __os.fill();
820 const std::streamsize __precision = __os.precision();
821 const _CharT __space = __os.widen(' ');
822 __os.flags(__ios_base::scientific | __ios_base::left);
824 __os.precision(std::numeric_limits<_RealType>::max_digits10);
826 __os << __x.mu() << __space << __x.omega();
827 __os << __space << __x._M_gd;
831 __os.precision(__precision);
835 template<typename _RealType, typename _CharT, typename _Traits>
836 std::basic_istream<_CharT, _Traits>&
837 operator>>(std::basic_istream<_CharT, _Traits>& __is,
838 nakagami_distribution<_RealType>& __x)
840 typedef std::basic_istream<_CharT, _Traits> __istream_type;
841 typedef typename __istream_type::ios_base __ios_base;
843 const typename __ios_base::fmtflags __flags = __is.flags();
844 __is.flags(__ios_base::dec | __ios_base::skipws);
846 _RealType __mu_val, __omega_val;
847 __is >> __mu_val >> __omega_val;
849 __x.param(typename nakagami_distribution<_RealType>::
850 param_type(__mu_val, __omega_val));
857 template<typename _RealType>
858 template<typename _OutputIterator,
859 typename _UniformRandomNumberGenerator>
861 pareto_distribution<_RealType>::
862 __generate_impl(_OutputIterator __f, _OutputIterator __t,
863 _UniformRandomNumberGenerator& __urng,
864 const param_type& __p)
866 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
868 result_type __mu_val = __p.mu();
869 result_type __malphinv = -result_type(1) / __p.alpha();
871 *__f++ = __mu_val * std::pow(this->_M_ud(__urng), __malphinv);
874 template<typename _RealType, typename _CharT, typename _Traits>
875 std::basic_ostream<_CharT, _Traits>&
876 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
877 const pareto_distribution<_RealType>& __x)
879 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
880 typedef typename __ostream_type::ios_base __ios_base;
882 const typename __ios_base::fmtflags __flags = __os.flags();
883 const _CharT __fill = __os.fill();
884 const std::streamsize __precision = __os.precision();
885 const _CharT __space = __os.widen(' ');
886 __os.flags(__ios_base::scientific | __ios_base::left);
888 __os.precision(std::numeric_limits<_RealType>::max_digits10);
890 __os << __x.alpha() << __space << __x.mu();
891 __os << __space << __x._M_ud;
895 __os.precision(__precision);
899 template<typename _RealType, typename _CharT, typename _Traits>
900 std::basic_istream<_CharT, _Traits>&
901 operator>>(std::basic_istream<_CharT, _Traits>& __is,
902 pareto_distribution<_RealType>& __x)
904 typedef std::basic_istream<_CharT, _Traits> __istream_type;
905 typedef typename __istream_type::ios_base __ios_base;
907 const typename __ios_base::fmtflags __flags = __is.flags();
908 __is.flags(__ios_base::dec | __ios_base::skipws);
910 _RealType __alpha_val, __mu_val;
911 __is >> __alpha_val >> __mu_val;
913 __x.param(typename pareto_distribution<_RealType>::
914 param_type(__alpha_val, __mu_val));
921 template<typename _RealType>
922 template<typename _UniformRandomNumberGenerator>
923 typename k_distribution<_RealType>::result_type
924 k_distribution<_RealType>::
925 operator()(_UniformRandomNumberGenerator& __urng)
927 result_type __x = this->_M_gd1(__urng);
928 result_type __y = this->_M_gd2(__urng);
929 return std::sqrt(__x * __y);
932 template<typename _RealType>
933 template<typename _UniformRandomNumberGenerator>
934 typename k_distribution<_RealType>::result_type
935 k_distribution<_RealType>::
936 operator()(_UniformRandomNumberGenerator& __urng,
937 const param_type& __p)
939 typename std::gamma_distribution<result_type>::param_type
940 __p1(__p.lambda(), result_type(1) / __p.lambda()),
941 __p2(__p.nu(), __p.mu() / __p.nu());
942 result_type __x = this->_M_gd1(__p1, __urng);
943 result_type __y = this->_M_gd2(__p2, __urng);
944 return std::sqrt(__x * __y);
947 template<typename _RealType>
948 template<typename _OutputIterator,
949 typename _UniformRandomNumberGenerator>
951 k_distribution<_RealType>::
952 __generate_impl(_OutputIterator __f, _OutputIterator __t,
953 _UniformRandomNumberGenerator& __urng,
954 const param_type& __p)
956 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
958 typename std::gamma_distribution<result_type>::param_type
959 __p1(__p.lambda(), result_type(1) / __p.lambda()),
960 __p2(__p.nu(), __p.mu() / __p.nu());
963 result_type __x = this->_M_gd1(__p1, __urng);
964 result_type __y = this->_M_gd2(__p2, __urng);
965 *__f++ = std::sqrt(__x * __y);
969 template<typename _RealType, typename _CharT, typename _Traits>
970 std::basic_ostream<_CharT, _Traits>&
971 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
972 const k_distribution<_RealType>& __x)
974 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
975 typedef typename __ostream_type::ios_base __ios_base;
977 const typename __ios_base::fmtflags __flags = __os.flags();
978 const _CharT __fill = __os.fill();
979 const std::streamsize __precision = __os.precision();
980 const _CharT __space = __os.widen(' ');
981 __os.flags(__ios_base::scientific | __ios_base::left);
983 __os.precision(std::numeric_limits<_RealType>::max_digits10);
985 __os << __x.lambda() << __space << __x.mu() << __space << __x.nu();
986 __os << __space << __x._M_gd1;
987 __os << __space << __x._M_gd2;
991 __os.precision(__precision);
995 template<typename _RealType, typename _CharT, typename _Traits>
996 std::basic_istream<_CharT, _Traits>&
997 operator>>(std::basic_istream<_CharT, _Traits>& __is,
998 k_distribution<_RealType>& __x)
1000 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1001 typedef typename __istream_type::ios_base __ios_base;
1003 const typename __ios_base::fmtflags __flags = __is.flags();
1004 __is.flags(__ios_base::dec | __ios_base::skipws);
1006 _RealType __lambda_val, __mu_val, __nu_val;
1007 __is >> __lambda_val >> __mu_val >> __nu_val;
1010 __x.param(typename k_distribution<_RealType>::
1011 param_type(__lambda_val, __mu_val, __nu_val));
1013 __is.flags(__flags);
1018 template<typename _RealType>
1019 template<typename _OutputIterator,
1020 typename _UniformRandomNumberGenerator>
1022 arcsine_distribution<_RealType>::
1023 __generate_impl(_OutputIterator __f, _OutputIterator __t,
1024 _UniformRandomNumberGenerator& __urng,
1025 const param_type& __p)
1027 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1029 result_type __dif = __p.b() - __p.a();
1030 result_type __sum = __p.a() + __p.b();
1033 result_type __x = std::sin(this->_M_ud(__urng));
1034 *__f++ = (__x * __dif + __sum) / result_type(2);
1038 template<typename _RealType, typename _CharT, typename _Traits>
1039 std::basic_ostream<_CharT, _Traits>&
1040 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1041 const arcsine_distribution<_RealType>& __x)
1043 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1044 typedef typename __ostream_type::ios_base __ios_base;
1046 const typename __ios_base::fmtflags __flags = __os.flags();
1047 const _CharT __fill = __os.fill();
1048 const std::streamsize __precision = __os.precision();
1049 const _CharT __space = __os.widen(' ');
1050 __os.flags(__ios_base::scientific | __ios_base::left);
1052 __os.precision(std::numeric_limits<_RealType>::max_digits10);
1054 __os << __x.a() << __space << __x.b();
1055 __os << __space << __x._M_ud;
1057 __os.flags(__flags);
1059 __os.precision(__precision);
1063 template<typename _RealType, typename _CharT, typename _Traits>
1064 std::basic_istream<_CharT, _Traits>&
1065 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1066 arcsine_distribution<_RealType>& __x)
1068 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1069 typedef typename __istream_type::ios_base __ios_base;
1071 const typename __ios_base::fmtflags __flags = __is.flags();
1072 __is.flags(__ios_base::dec | __ios_base::skipws);
1077 __x.param(typename arcsine_distribution<_RealType>::
1078 param_type(__a, __b));
1080 __is.flags(__flags);
1085 template<typename _RealType>
1086 template<typename _UniformRandomNumberGenerator>
1087 typename hoyt_distribution<_RealType>::result_type
1088 hoyt_distribution<_RealType>::
1089 operator()(_UniformRandomNumberGenerator& __urng)
1091 result_type __x = this->_M_ad(__urng);
1092 result_type __y = this->_M_ed(__urng);
1093 return (result_type(2) * this->q()
1094 / (result_type(1) + this->q() * this->q()))
1095 * std::sqrt(this->omega() * __x * __y);
1098 template<typename _RealType>
1099 template<typename _UniformRandomNumberGenerator>
1100 typename hoyt_distribution<_RealType>::result_type
1101 hoyt_distribution<_RealType>::
1102 operator()(_UniformRandomNumberGenerator& __urng,
1103 const param_type& __p)
1105 result_type __q2 = __p.q() * __p.q();
1106 result_type __num = result_type(0.5L) * (result_type(1) + __q2);
1107 typename __gnu_cxx::arcsine_distribution<result_type>::param_type
1108 __pa(__num, __num / __q2);
1109 result_type __x = this->_M_ad(__pa, __urng);
1110 result_type __y = this->_M_ed(__urng);
1111 return (result_type(2) * __p.q() / (result_type(1) + __q2))
1112 * std::sqrt(__p.omega() * __x * __y);
1115 template<typename _RealType>
1116 template<typename _OutputIterator,
1117 typename _UniformRandomNumberGenerator>
1119 hoyt_distribution<_RealType>::
1120 __generate_impl(_OutputIterator __f, _OutputIterator __t,
1121 _UniformRandomNumberGenerator& __urng,
1122 const param_type& __p)
1124 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1126 result_type __2q = result_type(2) * __p.q();
1127 result_type __q2 = __p.q() * __p.q();
1128 result_type __q2p1 = result_type(1) + __q2;
1129 result_type __num = result_type(0.5L) * __q2p1;
1130 result_type __omega = __p.omega();
1131 typename __gnu_cxx::arcsine_distribution<result_type>::param_type
1132 __pa(__num, __num / __q2);
1135 result_type __x = this->_M_ad(__pa, __urng);
1136 result_type __y = this->_M_ed(__urng);
1137 *__f++ = (__2q / __q2p1) * std::sqrt(__omega * __x * __y);
1141 template<typename _RealType, typename _CharT, typename _Traits>
1142 std::basic_ostream<_CharT, _Traits>&
1143 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1144 const hoyt_distribution<_RealType>& __x)
1146 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1147 typedef typename __ostream_type::ios_base __ios_base;
1149 const typename __ios_base::fmtflags __flags = __os.flags();
1150 const _CharT __fill = __os.fill();
1151 const std::streamsize __precision = __os.precision();
1152 const _CharT __space = __os.widen(' ');
1153 __os.flags(__ios_base::scientific | __ios_base::left);
1155 __os.precision(std::numeric_limits<_RealType>::max_digits10);
1157 __os << __x.q() << __space << __x.omega();
1158 __os << __space << __x._M_ad;
1159 __os << __space << __x._M_ed;
1161 __os.flags(__flags);
1163 __os.precision(__precision);
1167 template<typename _RealType, typename _CharT, typename _Traits>
1168 std::basic_istream<_CharT, _Traits>&
1169 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1170 hoyt_distribution<_RealType>& __x)
1172 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1173 typedef typename __istream_type::ios_base __ios_base;
1175 const typename __ios_base::fmtflags __flags = __is.flags();
1176 __is.flags(__ios_base::dec | __ios_base::skipws);
1178 _RealType __q, __omega;
1179 __is >> __q >> __omega;
1182 __x.param(typename hoyt_distribution<_RealType>::
1183 param_type(__q, __omega));
1185 __is.flags(__flags);
1190 template<typename _RealType>
1191 template<typename _OutputIterator,
1192 typename _UniformRandomNumberGenerator>
1194 triangular_distribution<_RealType>::
1195 __generate_impl(_OutputIterator __f, _OutputIterator __t,
1196 _UniformRandomNumberGenerator& __urng,
1197 const param_type& __param)
1199 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1202 *__f++ = this->operator()(__urng, __param);
1205 template<typename _RealType, typename _CharT, typename _Traits>
1206 std::basic_ostream<_CharT, _Traits>&
1207 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1208 const __gnu_cxx::triangular_distribution<_RealType>& __x)
1210 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1211 typedef typename __ostream_type::ios_base __ios_base;
1213 const typename __ios_base::fmtflags __flags = __os.flags();
1214 const _CharT __fill = __os.fill();
1215 const std::streamsize __precision = __os.precision();
1216 const _CharT __space = __os.widen(' ');
1217 __os.flags(__ios_base::scientific | __ios_base::left);
1219 __os.precision(std::numeric_limits<_RealType>::max_digits10);
1221 __os << __x.a() << __space << __x.b() << __space << __x.c();
1223 __os.flags(__flags);
1225 __os.precision(__precision);
1229 template<typename _RealType, typename _CharT, typename _Traits>
1230 std::basic_istream<_CharT, _Traits>&
1231 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1232 __gnu_cxx::triangular_distribution<_RealType>& __x)
1234 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1235 typedef typename __istream_type::ios_base __ios_base;
1237 const typename __ios_base::fmtflags __flags = __is.flags();
1238 __is.flags(__ios_base::dec | __ios_base::skipws);
1240 _RealType __a, __b, __c;
1241 __is >> __a >> __b >> __c;
1242 __x.param(typename __gnu_cxx::triangular_distribution<_RealType>::
1243 param_type(__a, __b, __c));
1245 __is.flags(__flags);
1250 template<typename _RealType>
1251 template<typename _OutputIterator,
1252 typename _UniformRandomNumberGenerator>
1254 von_mises_distribution<_RealType>::
1255 __generate_impl(_OutputIterator __f, _OutputIterator __t,
1256 _UniformRandomNumberGenerator& __urng,
1257 const param_type& __param)
1259 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1262 *__f++ = this->operator()(__urng, __param);
1265 template<typename _RealType, typename _CharT, typename _Traits>
1266 std::basic_ostream<_CharT, _Traits>&
1267 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1268 const __gnu_cxx::von_mises_distribution<_RealType>& __x)
1270 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1271 typedef typename __ostream_type::ios_base __ios_base;
1273 const typename __ios_base::fmtflags __flags = __os.flags();
1274 const _CharT __fill = __os.fill();
1275 const std::streamsize __precision = __os.precision();
1276 const _CharT __space = __os.widen(' ');
1277 __os.flags(__ios_base::scientific | __ios_base::left);
1279 __os.precision(std::numeric_limits<_RealType>::max_digits10);
1281 __os << __x.mu() << __space << __x.kappa();
1283 __os.flags(__flags);
1285 __os.precision(__precision);
1289 template<typename _RealType, typename _CharT, typename _Traits>
1290 std::basic_istream<_CharT, _Traits>&
1291 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1292 __gnu_cxx::von_mises_distribution<_RealType>& __x)
1294 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1295 typedef typename __istream_type::ios_base __ios_base;
1297 const typename __ios_base::fmtflags __flags = __is.flags();
1298 __is.flags(__ios_base::dec | __ios_base::skipws);
1300 _RealType __mu, __kappa;
1301 __is >> __mu >> __kappa;
1302 __x.param(typename __gnu_cxx::von_mises_distribution<_RealType>::
1303 param_type(__mu, __kappa));
1305 __is.flags(__flags);
1310 template<typename _UIntType>
1311 template<typename _UniformRandomNumberGenerator>
1312 typename hypergeometric_distribution<_UIntType>::result_type
1313 hypergeometric_distribution<_UIntType>::
1314 operator()(_UniformRandomNumberGenerator& __urng,
1315 const param_type& __param)
1317 std::__detail::_Adaptor<_UniformRandomNumberGenerator, double>
1320 result_type __a = __param.successful_size();
1321 result_type __b = __param.total_size();
1322 result_type __k = 0;
1324 if (__param.total_draws() < __param.total_size() / 2)
1326 for (result_type __i = 0; __i < __param.total_draws(); ++__i)
1328 if (__b * __aurng() < __a)
1331 if (__k == __param.successful_size())
1341 for (result_type __i = 0; __i < __param.unsuccessful_size(); ++__i)
1343 if (__b * __aurng() < __a)
1346 if (__k == __param.successful_size())
1347 return __param.successful_size() - __k;
1352 return __param.successful_size() - __k;
1356 template<typename _UIntType>
1357 template<typename _OutputIterator,
1358 typename _UniformRandomNumberGenerator>
1360 hypergeometric_distribution<_UIntType>::
1361 __generate_impl(_OutputIterator __f, _OutputIterator __t,
1362 _UniformRandomNumberGenerator& __urng,
1363 const param_type& __param)
1365 __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator>)
1368 *__f++ = this->operator()(__urng);
1371 template<typename _UIntType, typename _CharT, typename _Traits>
1372 std::basic_ostream<_CharT, _Traits>&
1373 operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1374 const __gnu_cxx::hypergeometric_distribution<_UIntType>& __x)
1376 typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
1377 typedef typename __ostream_type::ios_base __ios_base;
1379 const typename __ios_base::fmtflags __flags = __os.flags();
1380 const _CharT __fill = __os.fill();
1381 const std::streamsize __precision = __os.precision();
1382 const _CharT __space = __os.widen(' ');
1383 __os.flags(__ios_base::scientific | __ios_base::left);
1385 __os.precision(std::numeric_limits<_UIntType>::max_digits10);
1387 __os << __x.total_size() << __space << __x.successful_size() << __space
1388 << __x.total_draws();
1390 __os.flags(__flags);
1392 __os.precision(__precision);
1396 template<typename _UIntType, typename _CharT, typename _Traits>
1397 std::basic_istream<_CharT, _Traits>&
1398 operator>>(std::basic_istream<_CharT, _Traits>& __is,
1399 __gnu_cxx::hypergeometric_distribution<_UIntType>& __x)
1401 typedef std::basic_istream<_CharT, _Traits> __istream_type;
1402 typedef typename __istream_type::ios_base __ios_base;
1404 const typename __ios_base::fmtflags __flags = __is.flags();
1405 __is.flags(__ios_base::dec | __ios_base::skipws);
1407 _UIntType __total_size, __successful_size, __total_draws;
1408 __is >> __total_size >> __successful_size >> __total_draws;
1409 __x.param(typename __gnu_cxx::hypergeometric_distribution<_UIntType>::
1410 param_type(__total_size, __successful_size, __total_draws));
1412 __is.flags(__flags);
1416 _GLIBCXX_END_NAMESPACE_VERSION
1420 #endif // _EXT_RANDOM_TCC