1 // class template regex -*- C++ -*-
3 // Copyright (C) 2013-2014 Free Software Foundation, Inc.
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
26 * @file bits/regex_executor.tcc
27 * This is an internal header file, included by other library headers.
28 * Do not attempt to use it directly. @headername{regex}
31 namespace std _GLIBCXX_VISIBILITY(default)
35 _GLIBCXX_BEGIN_NAMESPACE_VERSION
37 template<typename _BiIter, typename _Alloc, typename _TraitsT,
39 bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
42 if (_M_flags & regex_constants::match_continuous)
43 return _M_search_from_first();
44 auto __cur = _M_begin;
51 // Continue when __cur == _M_end
52 while (__cur++ != _M_end);
56 // This function operates in different modes, DFS mode or BFS mode, indicated
57 // by template parameter __dfs_mode. See _M_main for details.
59 // ------------------------------------------------------------
63 // It applies a Depth-First-Search (aka backtracking) on given NFA and input
65 // At the very beginning the executor stands in the start state, then it tries
66 // every possible state transition in current state recursively. Some state
67 // transitions consume input string, say, a single-char-matcher or a
68 // back-reference matcher; some don't, like assertion or other anchor nodes.
69 // When the input is exhausted and/or the current state is an accepting state,
70 // the whole executor returns true.
72 // TODO: This approach is exponentially slow for certain input.
73 // Try to compile the NFA to a DFA.
75 // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
76 // Space complexity: \theta(match_results.size() + match_length)
78 // ------------------------------------------------------------
82 // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
83 // explained this algorithm clearly.
85 // It first computes epsilon closure (states that can be achieved without
86 // consuming characters) for every state that's still matching,
87 // using the same DFS algorithm, but doesn't re-enter states (find a true in
88 // _M_visited), nor follows _S_opcode_match.
90 // Then apply DFS using every _S_opcode_match (in _M_match_queue) as the start
93 // It significantly reduces potential duplicate states, so has a better
94 // upper bound; but it requires more overhead.
96 // Time complexity: \Omega(match_length * match_results.size())
97 // O(match_length * _M_nfa.size() * match_results.size())
98 // Space complexity: \Omega(_M_nfa.size() + match_results.size())
99 // O(_M_nfa.size() * match_results.size())
100 template<typename _BiIter, typename _Alloc, typename _TraitsT,
102 template<bool __match_mode>
103 bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
109 _M_cur_results = _M_results;
110 _M_dfs<__match_mode>(_M_start_state);
115 _M_match_queue->push_back(make_pair(_M_start_state, _M_results));
120 if (_M_match_queue->empty())
122 _M_visited->assign(_M_visited->size(), false);
123 auto __old_queue = std::move(*_M_match_queue);
124 for (auto& __task : __old_queue)
126 _M_cur_results = std::move(__task.second);
127 _M_dfs<__match_mode>(__task.first);
131 if (_M_current == _M_end)
141 // Return whether now match the given sub-NFA.
142 template<typename _BiIter, typename _Alloc, typename _TraitsT,
144 bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
145 _M_lookahead(_State<_TraitsT> __state)
147 _ResultsVec __what(_M_cur_results.size());
148 auto __sub = std::unique_ptr<_Executor>(new _Executor(_M_current,
153 __sub->_M_start_state = __state._M_alt;
154 if (__sub->_M_search_from_first())
156 for (size_t __i = 0; __i < __what.size(); __i++)
157 if (__what[__i].matched)
158 _M_cur_results[__i] = __what[__i];
164 // TODO: Use a function vector to dispatch, instead of using switch-case.
165 template<typename _BiIter, typename _Alloc, typename _TraitsT,
167 template<bool __match_mode>
168 void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
169 _M_dfs(_StateIdT __i)
173 if ((*_M_visited)[__i])
175 (*_M_visited)[__i] = true;
178 const auto& __state = _M_nfa[__i];
179 // Every change on _M_cur_results and _M_current will be rolled back after
180 // finishing the recursion step.
181 switch (__state._M_opcode)
183 // _M_alt branch is "match once more", while _M_next is "get me out
184 // of this quantifier". Executing _M_next first or _M_alt first don't
185 // mean the same thing, and we need to choose the correct order under
186 // given greedy mode.
187 case _S_opcode_alternative:
191 // "Once more" is preferred in greedy mode.
192 _M_dfs<__match_mode>(__state._M_alt);
193 // If it's DFS executor and already accepted, we're done.
194 if (!__dfs_mode || !_M_has_sol)
195 _M_dfs<__match_mode>(__state._M_next);
197 else // Non-greedy mode
202 _M_dfs<__match_mode>(__state._M_next);
204 _M_dfs<__match_mode>(__state._M_alt);
208 // DON'T attempt anything, because there's already another
209 // state with higher priority accepted. This state cannot be
210 // better by attempting its next node.
213 _M_dfs<__match_mode>(__state._M_next);
214 // DON'T attempt anything if it's already accepted. An
215 // accepted state *must* be better than a solution that
216 // matches a non-greedy quantifier one more time.
218 _M_dfs<__match_mode>(__state._M_alt);
223 case _S_opcode_subexpr_begin:
224 // If there's nothing changed since last visit, do NOT continue.
225 // This prevents the executor from get into infinite loop when using
226 // "()*" to match "".
227 if (!_M_cur_results[__state._M_subexpr].matched
228 || _M_cur_results[__state._M_subexpr].first != _M_current)
230 auto& __res = _M_cur_results[__state._M_subexpr];
231 auto __back = __res.first;
232 __res.first = _M_current;
233 _M_dfs<__match_mode>(__state._M_next);
234 __res.first = __back;
237 case _S_opcode_subexpr_end:
238 if (_M_cur_results[__state._M_subexpr].second != _M_current
239 || _M_cur_results[__state._M_subexpr].matched != true)
241 auto& __res = _M_cur_results[__state._M_subexpr];
243 __res.second = _M_current;
244 __res.matched = true;
245 _M_dfs<__match_mode>(__state._M_next);
249 _M_dfs<__match_mode>(__state._M_next);
251 case _S_opcode_line_begin_assertion:
253 _M_dfs<__match_mode>(__state._M_next);
255 case _S_opcode_line_end_assertion:
257 _M_dfs<__match_mode>(__state._M_next);
259 case _S_opcode_word_boundary:
260 if (_M_word_boundary(__state) == !__state._M_neg)
261 _M_dfs<__match_mode>(__state._M_next);
263 // Here __state._M_alt offers a single start node for a sub-NFA.
264 // We recursively invoke our algorithm to match the sub-NFA.
265 case _S_opcode_subexpr_lookahead:
266 if (_M_lookahead(__state) == !__state._M_neg)
267 _M_dfs<__match_mode>(__state._M_next);
269 case _S_opcode_match:
270 if (_M_current == _M_end)
274 if (__state._M_matches(*_M_current))
277 _M_dfs<__match_mode>(__state._M_next);
282 if (__state._M_matches(*_M_current))
283 _M_match_queue->push_back(make_pair(__state._M_next,
286 // First fetch the matched result from _M_cur_results as __submatch;
287 // then compare it with
288 // (_M_current, _M_current + (__submatch.second - __submatch.first)).
289 // If matched, keep going; else just return and try another state.
290 case _S_opcode_backref:
292 _GLIBCXX_DEBUG_ASSERT(__dfs_mode);
293 auto& __submatch = _M_cur_results[__state._M_backref_index];
294 if (!__submatch.matched)
296 auto __last = _M_current;
297 for (auto __tmp = __submatch.first;
298 __last != _M_end && __tmp != __submatch.second;
301 if (_M_re._M_traits.transform(__submatch.first,
303 == _M_re._M_traits.transform(_M_current, __last))
305 if (__last != _M_current)
307 auto __backup = _M_current;
309 _M_dfs<__match_mode>(__state._M_next);
310 _M_current = __backup;
313 _M_dfs<__match_mode>(__state._M_next);
317 case _S_opcode_accept:
320 _GLIBCXX_DEBUG_ASSERT(!_M_has_sol);
322 _M_has_sol = _M_current == _M_end;
325 if (_M_current == _M_begin
326 && (_M_flags & regex_constants::match_not_null))
329 _M_results = _M_cur_results;
333 if (_M_current == _M_begin
334 && (_M_flags & regex_constants::match_not_null))
336 if (!__match_mode || _M_current == _M_end)
340 _M_results = _M_cur_results;
345 _GLIBCXX_DEBUG_ASSERT(false);
349 // Return whether now is at some word boundary.
350 template<typename _BiIter, typename _Alloc, typename _TraitsT,
352 bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
353 _M_word_boundary(_State<_TraitsT> __state) const
355 bool __left_is_word = false;
356 if (_M_current != _M_begin
357 || (_M_flags & regex_constants::match_prev_avail))
359 auto __prev = _M_current;
360 if (_M_is_word(*std::prev(__prev)))
361 __left_is_word = true;
363 bool __right_is_word =
364 _M_current != _M_end && _M_is_word(*_M_current);
366 if (__left_is_word == __right_is_word)
368 if (__left_is_word && !(_M_flags & regex_constants::match_not_eow))
370 if (__right_is_word && !(_M_flags & regex_constants::match_not_bow))
375 _GLIBCXX_END_NAMESPACE_VERSION
376 } // namespace __detail