libstdc++
bits/hashtable.h
Go to the documentation of this file.
1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  * This is an internal header file, included by other library headers.
27  * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 
37 namespace std _GLIBCXX_VISIBILITY(default)
38 {
39 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40 
41  template<typename _Tp, typename _Hash>
42  using __cache_default
43  = __not_<__and_<// Do not cache for fast hasher.
44  __is_fast_hash<_Hash>,
45  // Mandatory to have erase not throwing.
46  __detail::__is_noexcept_hash<_Tp, _Hash>>>;
47 
48  /**
49  * Primary class template _Hashtable.
50  *
51  * @ingroup hashtable-detail
52  *
53  * @tparam _Value CopyConstructible type.
54  *
55  * @tparam _Key CopyConstructible type.
56  *
57  * @tparam _Alloc An allocator type
58  * ([lib.allocator.requirements]) whose _Alloc::value_type is
59  * _Value. As a conforming extension, we allow for
60  * _Alloc::value_type != _Value.
61  *
62  * @tparam _ExtractKey Function object that takes an object of type
63  * _Value and returns a value of type _Key.
64  *
65  * @tparam _Equal Function object that takes two objects of type k
66  * and returns a bool-like value that is true if the two objects
67  * are considered equal.
68  *
69  * @tparam _H1 The hash function. A unary function object with
70  * argument type _Key and result type size_t. Return values should
71  * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
72  *
73  * @tparam _H2 The range-hashing function (in the terminology of
74  * Tavori and Dreizin). A binary function object whose argument
75  * types and result type are all size_t. Given arguments r and N,
76  * the return value is in the range [0, N).
77  *
78  * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
79  * binary function whose argument types are _Key and size_t and
80  * whose result type is size_t. Given arguments k and N, the
81  * return value is in the range [0, N). Default: hash(k, N) =
82  * h2(h1(k), N). If _Hash is anything other than the default, _H1
83  * and _H2 are ignored.
84  *
85  * @tparam _RehashPolicy Policy class with three members, all of
86  * which govern the bucket count. _M_next_bkt(n) returns a bucket
87  * count no smaller than n. _M_bkt_for_elements(n) returns a
88  * bucket count appropriate for an element count of n.
89  * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
90  * current bucket count is n_bkt and the current element count is
91  * n_elt, we need to increase the bucket count. If so, returns
92  * make_pair(true, n), where n is the new bucket count. If not,
93  * returns make_pair(false, <anything>)
94  *
95  * @tparam _Traits Compile-time class with three boolean
96  * std::integral_constant members: __cache_hash_code, __constant_iterators,
97  * __unique_keys.
98  *
99  * Each _Hashtable data structure has:
100  *
101  * - _Bucket[] _M_buckets
102  * - _Hash_node_base _M_before_begin
103  * - size_type _M_bucket_count
104  * - size_type _M_element_count
105  *
106  * with _Bucket being _Hash_node* and _Hash_node containing:
107  *
108  * - _Hash_node* _M_next
109  * - Tp _M_value
110  * - size_t _M_hash_code if cache_hash_code is true
111  *
112  * In terms of Standard containers the hashtable is like the aggregation of:
113  *
114  * - std::forward_list<_Node> containing the elements
115  * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
116  *
117  * The non-empty buckets contain the node before the first node in the
118  * bucket. This design makes it possible to implement something like a
119  * std::forward_list::insert_after on container insertion and
120  * std::forward_list::erase_after on container erase
121  * calls. _M_before_begin is equivalent to
122  * std::forward_list::before_begin. Empty buckets contain
123  * nullptr. Note that one of the non-empty buckets contains
124  * &_M_before_begin which is not a dereferenceable node so the
125  * node pointer in a bucket shall never be dereferenced, only its
126  * next node can be.
127  *
128  * Walking through a bucket's nodes requires a check on the hash code to
129  * see if each node is still in the bucket. Such a design assumes a
130  * quite efficient hash functor and is one of the reasons it is
131  * highly advisable to set __cache_hash_code to true.
132  *
133  * The container iterators are simply built from nodes. This way
134  * incrementing the iterator is perfectly efficient independent of
135  * how many empty buckets there are in the container.
136  *
137  * On insert we compute the element's hash code and use it to find the
138  * bucket index. If the element must be inserted in an empty bucket
139  * we add it at the beginning of the singly linked list and make the
140  * bucket point to _M_before_begin. The bucket that used to point to
141  * _M_before_begin, if any, is updated to point to its new before
142  * begin node.
143  *
144  * On erase, the simple iterator design requires using the hash
145  * functor to get the index of the bucket to update. For this
146  * reason, when __cache_hash_code is set to false the hash functor must
147  * not throw and this is enforced by a static assertion.
148  *
149  * Functionality is implemented by decomposition into base classes,
150  * where the derived _Hashtable class is used in _Map_base,
151  * _Insert, _Rehash_base, and _Equality base classes to access the
152  * "this" pointer. _Hashtable_base is used in the base classes as a
153  * non-recursive, fully-completed-type so that detailed nested type
154  * information, such as iterator type and node type, can be
155  * used. This is similar to the "Curiously Recurring Template
156  * Pattern" (CRTP) technique, but uses a reconstructed, not
157  * explicitly passed, template pattern.
158  *
159  * Base class templates are:
160  * - __detail::_Hashtable_base
161  * - __detail::_Map_base
162  * - __detail::_Insert
163  * - __detail::_Rehash_base
164  * - __detail::_Equality
165  */
166  template<typename _Key, typename _Value, typename _Alloc,
167  typename _ExtractKey, typename _Equal,
168  typename _H1, typename _H2, typename _Hash,
169  typename _RehashPolicy, typename _Traits>
171  : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
172  _H1, _H2, _Hash, _Traits>,
173  public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
174  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
175  public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
176  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
177  public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179  public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
182  typename __alloctr_rebind<_Alloc,
183  __detail::_Hash_node<_Value,
184  _Traits::__hash_cached::value> >::__type>
185  {
186  using __traits_type = _Traits;
187  using __hash_cached = typename __traits_type::__hash_cached;
189  using __node_alloc_type =
190  typename __alloctr_rebind<_Alloc, __node_type>::__type;
191 
193 
194  using __value_alloc_traits =
196  using __node_alloc_traits =
198  using __node_base = typename __hashtable_alloc::__node_base;
199  using __bucket_type = typename __hashtable_alloc::__bucket_type;
200 
201  public:
202  typedef _Key key_type;
203  typedef _Value value_type;
204  typedef _Alloc allocator_type;
205  typedef _Equal key_equal;
206 
207  // mapped_type, if present, comes from _Map_base.
208  // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
209  typedef typename __value_alloc_traits::pointer pointer;
210  typedef typename __value_alloc_traits::const_pointer const_pointer;
211  typedef value_type& reference;
212  typedef const value_type& const_reference;
213 
214  private:
215  using __rehash_type = _RehashPolicy;
216  using __rehash_state = typename __rehash_type::_State;
217 
218  using __constant_iterators = typename __traits_type::__constant_iterators;
219  using __unique_keys = typename __traits_type::__unique_keys;
220 
221  using __key_extract = typename std::conditional<
222  __constant_iterators::value,
223  __detail::_Identity,
224  __detail::_Select1st>::type;
225 
227  _Hashtable_base<_Key, _Value, _ExtractKey,
228  _Equal, _H1, _H2, _Hash, _Traits>;
229 
230  using __hash_code_base = typename __hashtable_base::__hash_code_base;
231  using __hash_code = typename __hashtable_base::__hash_code;
232  using __ireturn_type = typename __hashtable_base::__ireturn_type;
233 
234  using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
235  _Equal, _H1, _H2, _Hash,
236  _RehashPolicy, _Traits>;
237 
238  using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
239  _ExtractKey, _Equal,
240  _H1, _H2, _Hash,
241  _RehashPolicy, _Traits>;
242 
243  using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
244  _Equal, _H1, _H2, _Hash,
245  _RehashPolicy, _Traits>;
246 
247  using __reuse_or_alloc_node_type =
248  __detail::_ReuseOrAllocNode<__node_alloc_type>;
249 
250  // Metaprogramming for picking apart hash caching.
251  template<typename _Cond>
252  using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
253 
254  template<typename _Cond>
255  using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
256 
257  // Compile-time diagnostics.
258 
259  // _Hash_code_base has everything protected, so use this derived type to
260  // access it.
261  struct __hash_code_base_access : __hash_code_base
262  { using __hash_code_base::_M_bucket_index; };
263 
264  // Getting a bucket index from a node shall not throw because it is used
265  // in methods (erase, swap...) that shall not throw.
266  static_assert(noexcept(declval<const __hash_code_base_access&>()
267  ._M_bucket_index((const __node_type*)nullptr,
268  (std::size_t)0)),
269  "Cache the hash code or qualify your functors involved"
270  " in hash code and bucket index computation with noexcept");
271 
272  // Following two static assertions are necessary to guarantee
273  // that local_iterator will be default constructible.
274 
275  // When hash codes are cached local iterator inherits from H2 functor
276  // which must then be default constructible.
277  static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
278  "Functor used to map hash code to bucket index"
279  " must be default constructible");
280 
281  template<typename _Keya, typename _Valuea, typename _Alloca,
282  typename _ExtractKeya, typename _Equala,
283  typename _H1a, typename _H2a, typename _Hasha,
284  typename _RehashPolicya, typename _Traitsa,
285  bool _Unique_keysa>
286  friend struct __detail::_Map_base;
287 
288  template<typename _Keya, typename _Valuea, typename _Alloca,
289  typename _ExtractKeya, typename _Equala,
290  typename _H1a, typename _H2a, typename _Hasha,
291  typename _RehashPolicya, typename _Traitsa>
292  friend struct __detail::_Insert_base;
293 
294  template<typename _Keya, typename _Valuea, typename _Alloca,
295  typename _ExtractKeya, typename _Equala,
296  typename _H1a, typename _H2a, typename _Hasha,
297  typename _RehashPolicya, typename _Traitsa,
298  bool _Constant_iteratorsa, bool _Unique_keysa>
299  friend struct __detail::_Insert;
300 
301  public:
302  using size_type = typename __hashtable_base::size_type;
303  using difference_type = typename __hashtable_base::difference_type;
304 
305  using iterator = typename __hashtable_base::iterator;
307 
311 
312  private:
313  __bucket_type* _M_buckets;
314  size_type _M_bucket_count;
315  __node_base _M_before_begin;
316  size_type _M_element_count;
317  _RehashPolicy _M_rehash_policy;
318 
319  // A single bucket used when only need for 1 bucket. Especially
320  // interesting in move semantic to leave hashtable with only 1 buckets
321  // which is not allocated so that we can have those operations noexcept
322  // qualified.
323  // Note that we can't leave hashtable with 0 bucket without adding
324  // numerous checks in the code to avoid 0 modulus.
325  __bucket_type _M_single_bucket;
326 
327  bool
328  _M_uses_single_bucket(__bucket_type* __bkts) const
329  { return __builtin_expect(__bkts == &_M_single_bucket, false); }
330 
331  bool
332  _M_uses_single_bucket() const
333  { return _M_uses_single_bucket(_M_buckets); }
334 
336  _M_base_alloc() { return *this; }
337 
338  __bucket_type*
339  _M_allocate_buckets(size_type __n)
340  {
341  if (__builtin_expect(__n == 1, false))
342  {
343  _M_single_bucket = nullptr;
344  return &_M_single_bucket;
345  }
346 
347  return __hashtable_alloc::_M_allocate_buckets(__n);
348  }
349 
350  void
351  _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
352  {
353  if (_M_uses_single_bucket(__bkts))
354  return;
355 
356  __hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
357  }
358 
359  void
360  _M_deallocate_buckets()
361  { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
362 
363  // Gets bucket begin, deals with the fact that non-empty buckets contain
364  // their before begin node.
365  __node_type*
366  _M_bucket_begin(size_type __bkt) const;
367 
368  __node_type*
369  _M_begin() const
370  { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
371 
372  template<typename _NodeGenerator>
373  void
374  _M_assign(const _Hashtable&, const _NodeGenerator&);
375 
376  void
377  _M_move_assign(_Hashtable&&, std::true_type);
378 
379  void
380  _M_move_assign(_Hashtable&&, std::false_type);
381 
382  void
383  _M_reset() noexcept;
384 
385  public:
386  // Constructor, destructor, assignment, swap
387  _Hashtable(size_type __bucket_hint,
388  const _H1&, const _H2&, const _Hash&,
389  const _Equal&, const _ExtractKey&,
390  const allocator_type&);
391 
392  template<typename _InputIterator>
393  _Hashtable(_InputIterator __first, _InputIterator __last,
394  size_type __bucket_hint,
395  const _H1&, const _H2&, const _Hash&,
396  const _Equal&, const _ExtractKey&,
397  const allocator_type&);
398 
399  _Hashtable(const _Hashtable&);
400 
401  _Hashtable(_Hashtable&&) noexcept;
402 
403  _Hashtable(const _Hashtable&, const allocator_type&);
404 
405  _Hashtable(_Hashtable&&, const allocator_type&);
406 
407  // Use delegating constructors.
408  explicit
409  _Hashtable(const allocator_type& __a)
410  : _Hashtable(10, _H1(), _H2(), _Hash(), key_equal(),
411  __key_extract(), __a)
412  { }
413 
414  explicit
415  _Hashtable(size_type __n = 10,
416  const _H1& __hf = _H1(),
417  const key_equal& __eql = key_equal(),
418  const allocator_type& __a = allocator_type())
419  : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
420  __key_extract(), __a)
421  { }
422 
423  template<typename _InputIterator>
424  _Hashtable(_InputIterator __f, _InputIterator __l,
425  size_type __n = 0,
426  const _H1& __hf = _H1(),
427  const key_equal& __eql = key_equal(),
428  const allocator_type& __a = allocator_type())
429  : _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
430  __key_extract(), __a)
431  { }
432 
433  _Hashtable(initializer_list<value_type> __l,
434  size_type __n = 0,
435  const _H1& __hf = _H1(),
436  const key_equal& __eql = key_equal(),
437  const allocator_type& __a = allocator_type())
438  : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
439  __key_extract(), __a)
440  { }
441 
442  _Hashtable&
443  operator=(const _Hashtable& __ht);
444 
445  _Hashtable&
446  operator=(_Hashtable&& __ht)
447  noexcept(__node_alloc_traits::_S_nothrow_move())
448  {
449  constexpr bool __move_storage =
450  __node_alloc_traits::_S_propagate_on_move_assign()
451  || __node_alloc_traits::_S_always_equal();
452  _M_move_assign(std::move(__ht),
453  integral_constant<bool, __move_storage>());
454  return *this;
455  }
456 
457  _Hashtable&
458  operator=(initializer_list<value_type> __l)
459  {
460  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
461  _M_before_begin._M_nxt = nullptr;
462  clear();
463  this->_M_insert_range(__l.begin(), __l.end(), __roan);
464  return *this;
465  }
466 
467  ~_Hashtable() noexcept;
468 
469  void
470  swap(_Hashtable&)
471  noexcept(__node_alloc_traits::_S_nothrow_swap());
472 
473  // Basic container operations
474  iterator
475  begin() noexcept
476  { return iterator(_M_begin()); }
477 
479  begin() const noexcept
480  { return const_iterator(_M_begin()); }
481 
482  iterator
483  end() noexcept
484  { return iterator(nullptr); }
485 
487  end() const noexcept
488  { return const_iterator(nullptr); }
489 
491  cbegin() const noexcept
492  { return const_iterator(_M_begin()); }
493 
495  cend() const noexcept
496  { return const_iterator(nullptr); }
497 
498  size_type
499  size() const noexcept
500  { return _M_element_count; }
501 
502  bool
503  empty() const noexcept
504  { return size() == 0; }
505 
506  allocator_type
507  get_allocator() const noexcept
508  { return allocator_type(this->_M_node_allocator()); }
509 
510  size_type
511  max_size() const noexcept
512  { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
513 
514  // Observers
515  key_equal
516  key_eq() const
517  { return this->_M_eq(); }
518 
519  // hash_function, if present, comes from _Hash_code_base.
520 
521  // Bucket operations
522  size_type
523  bucket_count() const noexcept
524  { return _M_bucket_count; }
525 
526  size_type
527  max_bucket_count() const noexcept
528  { return max_size(); }
529 
530  size_type
531  bucket_size(size_type __n) const
532  { return std::distance(begin(__n), end(__n)); }
533 
534  size_type
535  bucket(const key_type& __k) const
536  { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
537 
539  begin(size_type __n)
540  {
541  return local_iterator(*this, _M_bucket_begin(__n),
542  __n, _M_bucket_count);
543  }
544 
546  end(size_type __n)
547  { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
548 
550  begin(size_type __n) const
551  {
552  return const_local_iterator(*this, _M_bucket_begin(__n),
553  __n, _M_bucket_count);
554  }
555 
557  end(size_type __n) const
558  { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
559 
560  // DR 691.
562  cbegin(size_type __n) const
563  {
564  return const_local_iterator(*this, _M_bucket_begin(__n),
565  __n, _M_bucket_count);
566  }
567 
569  cend(size_type __n) const
570  { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
571 
572  float
573  load_factor() const noexcept
574  {
575  return static_cast<float>(size()) / static_cast<float>(bucket_count());
576  }
577 
578  // max_load_factor, if present, comes from _Rehash_base.
579 
580  // Generalization of max_load_factor. Extension, not found in
581  // TR1. Only useful if _RehashPolicy is something other than
582  // the default.
583  const _RehashPolicy&
584  __rehash_policy() const
585  { return _M_rehash_policy; }
586 
587  void
588  __rehash_policy(const _RehashPolicy&);
589 
590  // Lookup.
591  iterator
592  find(const key_type& __k);
593 
595  find(const key_type& __k) const;
596 
597  size_type
598  count(const key_type& __k) const;
599 
601  equal_range(const key_type& __k);
602 
604  equal_range(const key_type& __k) const;
605 
606  protected:
607  // Bucket index computation helpers.
608  size_type
609  _M_bucket_index(__node_type* __n) const noexcept
610  { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
611 
612  size_type
613  _M_bucket_index(const key_type& __k, __hash_code __c) const
614  { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
615 
616  // Find and insert helper functions and types
617  // Find the node before the one matching the criteria.
618  __node_base*
619  _M_find_before_node(size_type, const key_type&, __hash_code) const;
620 
621  __node_type*
622  _M_find_node(size_type __bkt, const key_type& __key,
623  __hash_code __c) const
624  {
625  __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
626  if (__before_n)
627  return static_cast<__node_type*>(__before_n->_M_nxt);
628  return nullptr;
629  }
630 
631  // Insert a node at the beginning of a bucket.
632  void
633  _M_insert_bucket_begin(size_type, __node_type*);
634 
635  // Remove the bucket first node
636  void
637  _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
638  size_type __next_bkt);
639 
640  // Get the node before __n in the bucket __bkt
641  __node_base*
642  _M_get_previous_node(size_type __bkt, __node_base* __n);
643 
644  // Insert node with hash code __code, in bucket bkt if no rehash (assumes
645  // no element with its key already present). Take ownership of the node,
646  // deallocate it on exception.
647  iterator
648  _M_insert_unique_node(size_type __bkt, __hash_code __code,
649  __node_type* __n);
650 
651  // Insert node with hash code __code. Take ownership of the node,
652  // deallocate it on exception.
653  iterator
654  _M_insert_multi_node(__node_type* __hint,
655  __hash_code __code, __node_type* __n);
656 
657  template<typename... _Args>
659  _M_emplace(std::true_type, _Args&&... __args);
660 
661  template<typename... _Args>
662  iterator
663  _M_emplace(std::false_type __uk, _Args&&... __args)
664  { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
665 
666  // Emplace with hint, useless when keys are unique.
667  template<typename... _Args>
668  iterator
669  _M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
670  { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
671 
672  template<typename... _Args>
673  iterator
674  _M_emplace(const_iterator, std::false_type, _Args&&... __args);
675 
676  template<typename _Arg, typename _NodeGenerator>
678  _M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
679 
680  template<typename _Arg, typename _NodeGenerator>
681  iterator
682  _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
683  std::false_type __uk)
684  {
685  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
686  __uk);
687  }
688 
689  // Insert with hint, not used when keys are unique.
690  template<typename _Arg, typename _NodeGenerator>
691  iterator
692  _M_insert(const_iterator, _Arg&& __arg, const _NodeGenerator& __node_gen,
693  std::true_type __uk)
694  {
695  return
696  _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
697  }
698 
699  // Insert with hint when keys are not unique.
700  template<typename _Arg, typename _NodeGenerator>
701  iterator
702  _M_insert(const_iterator, _Arg&&, const _NodeGenerator&, std::false_type);
703 
704  size_type
705  _M_erase(std::true_type, const key_type&);
706 
707  size_type
708  _M_erase(std::false_type, const key_type&);
709 
710  iterator
711  _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
712 
713  public:
714  // Emplace
715  template<typename... _Args>
716  __ireturn_type
717  emplace(_Args&&... __args)
718  { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
719 
720  template<typename... _Args>
721  iterator
722  emplace_hint(const_iterator __hint, _Args&&... __args)
723  {
724  return _M_emplace(__hint, __unique_keys(),
725  std::forward<_Args>(__args)...);
726  }
727 
728  // Insert member functions via inheritance.
729 
730  // Erase
731  iterator
732  erase(const_iterator);
733 
734  // LWG 2059.
735  iterator
736  erase(iterator __it)
737  { return erase(const_iterator(__it)); }
738 
739  size_type
740  erase(const key_type& __k)
741  { return _M_erase(__unique_keys(), __k); }
742 
743  iterator
745 
746  void
747  clear() noexcept;
748 
749  // Set number of buckets to be appropriate for container of n element.
750  void rehash(size_type __n);
751 
752  // DR 1189.
753  // reserve, if present, comes from _Rehash_base.
754 
755  private:
756  // Helper rehash method used when keys are unique.
757  void _M_rehash_aux(size_type __n, std::true_type);
758 
759  // Helper rehash method used when keys can be non-unique.
760  void _M_rehash_aux(size_type __n, std::false_type);
761 
762  // Unconditionally change size of bucket array to n, restore
763  // hash policy state to __state on exception.
764  void _M_rehash(size_type __n, const __rehash_state& __state);
765  };
766 
767 
768  // Definitions of class template _Hashtable's out-of-line member functions.
769  template<typename _Key, typename _Value,
770  typename _Alloc, typename _ExtractKey, typename _Equal,
771  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
772  typename _Traits>
773  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
774  _Equal, _H1, _H2, _Hash, _RehashPolicy,
775  _Traits>::__node_type*
776  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
777  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
778  _M_bucket_begin(size_type __bkt) const
779  {
780  __node_base* __n = _M_buckets[__bkt];
781  return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
782  }
783 
784  template<typename _Key, typename _Value,
785  typename _Alloc, typename _ExtractKey, typename _Equal,
786  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
787  typename _Traits>
788  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
789  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
790  _Hashtable(size_type __bucket_hint,
791  const _H1& __h1, const _H2& __h2, const _Hash& __h,
792  const _Equal& __eq, const _ExtractKey& __exk,
793  const allocator_type& __a)
794  : __hashtable_base(__exk, __h1, __h2, __h, __eq),
795  __map_base(),
796  __rehash_base(),
797  __hashtable_alloc(__node_alloc_type(__a)),
798  _M_element_count(0),
799  _M_rehash_policy()
800  {
801  _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint);
802  _M_buckets = _M_allocate_buckets(_M_bucket_count);
803  }
804 
805  template<typename _Key, typename _Value,
806  typename _Alloc, typename _ExtractKey, typename _Equal,
807  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
808  typename _Traits>
809  template<typename _InputIterator>
810  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
811  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
812  _Hashtable(_InputIterator __f, _InputIterator __l,
813  size_type __bucket_hint,
814  const _H1& __h1, const _H2& __h2, const _Hash& __h,
815  const _Equal& __eq, const _ExtractKey& __exk,
816  const allocator_type& __a)
817  : __hashtable_base(__exk, __h1, __h2, __h, __eq),
818  __map_base(),
819  __rehash_base(),
820  __hashtable_alloc(__node_alloc_type(__a)),
821  _M_element_count(0),
822  _M_rehash_policy()
823  {
824  auto __nb_elems = __detail::__distance_fw(__f, __l);
825  _M_bucket_count =
826  _M_rehash_policy._M_next_bkt(
827  std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
828  __bucket_hint));
829 
830  _M_buckets = _M_allocate_buckets(_M_bucket_count);
831  __try
832  {
833  for (; __f != __l; ++__f)
834  this->insert(*__f);
835  }
836  __catch(...)
837  {
838  clear();
839  _M_deallocate_buckets();
840  __throw_exception_again;
841  }
842  }
843 
844  template<typename _Key, typename _Value,
845  typename _Alloc, typename _ExtractKey, typename _Equal,
846  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
847  typename _Traits>
848  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
849  _H1, _H2, _Hash, _RehashPolicy, _Traits>&
850  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
851  _H1, _H2, _Hash, _RehashPolicy, _Traits>::operator=(
852  const _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
853  _H1, _H2, _Hash, _RehashPolicy, _Traits>& __ht)
854  {
855  if (&__ht == this)
856  return *this;
857 
858  if (__node_alloc_traits::_S_propagate_on_copy_assign())
859  {
860  auto& __this_alloc = this->_M_node_allocator();
861  auto& __that_alloc = __ht._M_node_allocator();
862  if (!__node_alloc_traits::_S_always_equal()
863  && __this_alloc != __that_alloc)
864  {
865  // Replacement allocator cannot free existing storage.
866  this->_M_deallocate_nodes(_M_begin());
867  _M_before_begin._M_nxt = nullptr;
868  _M_deallocate_buckets();
869  _M_buckets = nullptr;
870  std::__alloc_on_copy(__this_alloc, __that_alloc);
871  __hashtable_base::operator=(__ht);
872  _M_bucket_count = __ht._M_bucket_count;
873  _M_element_count = __ht._M_element_count;
874  _M_rehash_policy = __ht._M_rehash_policy;
875  __try
876  {
877  _M_assign(__ht,
878  [this](const __node_type* __n)
879  { return this->_M_allocate_node(__n->_M_v()); });
880  }
881  __catch(...)
882  {
883  // _M_assign took care of deallocating all memory. Now we
884  // must make sure this instance remains in a usable state.
885  _M_reset();
886  __throw_exception_again;
887  }
888  return *this;
889  }
890  std::__alloc_on_copy(__this_alloc, __that_alloc);
891  }
892 
893  // Reuse allocated buckets and nodes.
894  __bucket_type* __former_buckets = nullptr;
895  std::size_t __former_bucket_count = _M_bucket_count;
896  const __rehash_state& __former_state = _M_rehash_policy._M_state();
897 
898  if (_M_bucket_count != __ht._M_bucket_count)
899  {
900  __former_buckets = _M_buckets;
901  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
902  _M_bucket_count = __ht._M_bucket_count;
903  }
904  else
905  __builtin_memset(_M_buckets, 0,
906  _M_bucket_count * sizeof(__bucket_type));
907 
908  __try
909  {
910  __hashtable_base::operator=(__ht);
911  _M_element_count = __ht._M_element_count;
912  _M_rehash_policy = __ht._M_rehash_policy;
913  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
914  _M_before_begin._M_nxt = nullptr;
915  _M_assign(__ht,
916  [&__roan](const __node_type* __n)
917  { return __roan(__n->_M_v()); });
918  if (__former_buckets)
919  _M_deallocate_buckets(__former_buckets, __former_bucket_count);
920  }
921  __catch(...)
922  {
923  if (__former_buckets)
924  {
925  // Restore previous buckets.
926  _M_deallocate_buckets();
927  _M_rehash_policy._M_reset(__former_state);
928  _M_buckets = __former_buckets;
929  _M_bucket_count = __former_bucket_count;
930  }
931  __builtin_memset(_M_buckets, 0,
932  _M_bucket_count * sizeof(__bucket_type));
933  __throw_exception_again;
934  }
935  return *this;
936  }
937 
938  template<typename _Key, typename _Value,
939  typename _Alloc, typename _ExtractKey, typename _Equal,
940  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
941  typename _Traits>
942  template<typename _NodeGenerator>
943  void
944  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
945  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
946  _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
947  {
948  __bucket_type* __buckets = nullptr;
949  if (!_M_buckets)
950  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
951 
952  __try
953  {
954  if (!__ht._M_before_begin._M_nxt)
955  return;
956 
957  // First deal with the special first node pointed to by
958  // _M_before_begin.
959  __node_type* __ht_n = __ht._M_begin();
960  __node_type* __this_n = __node_gen(__ht_n);
961  this->_M_copy_code(__this_n, __ht_n);
962  _M_before_begin._M_nxt = __this_n;
963  _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
964 
965  // Then deal with other nodes.
966  __node_base* __prev_n = __this_n;
967  for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
968  {
969  __this_n = __node_gen(__ht_n);
970  __prev_n->_M_nxt = __this_n;
971  this->_M_copy_code(__this_n, __ht_n);
972  size_type __bkt = _M_bucket_index(__this_n);
973  if (!_M_buckets[__bkt])
974  _M_buckets[__bkt] = __prev_n;
975  __prev_n = __this_n;
976  }
977  }
978  __catch(...)
979  {
980  clear();
981  if (__buckets)
982  _M_deallocate_buckets();
983  __throw_exception_again;
984  }
985  }
986 
987  template<typename _Key, typename _Value,
988  typename _Alloc, typename _ExtractKey, typename _Equal,
989  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
990  typename _Traits>
991  void
992  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
993  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
994  _M_reset() noexcept
995  {
996  _M_rehash_policy._M_reset();
997  _M_bucket_count = 1;
998  _M_single_bucket = nullptr;
999  _M_buckets = &_M_single_bucket;
1000  _M_before_begin._M_nxt = nullptr;
1001  _M_element_count = 0;
1002  }
1003 
1004  template<typename _Key, typename _Value,
1005  typename _Alloc, typename _ExtractKey, typename _Equal,
1006  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1007  typename _Traits>
1008  void
1009  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1010  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1011  _M_move_assign(_Hashtable&& __ht, std::true_type)
1012  {
1013  this->_M_deallocate_nodes(_M_begin());
1014  _M_deallocate_buckets();
1015  __hashtable_base::operator=(std::move(__ht));
1016  _M_rehash_policy = __ht._M_rehash_policy;
1017  if (!__ht._M_uses_single_bucket())
1018  _M_buckets = __ht._M_buckets;
1019  else
1020  {
1021  _M_buckets = &_M_single_bucket;
1022  _M_single_bucket = __ht._M_single_bucket;
1023  }
1024  _M_bucket_count = __ht._M_bucket_count;
1025  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1026  _M_element_count = __ht._M_element_count;
1027  std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1028 
1029  // Fix buckets containing the _M_before_begin pointers that can't be
1030  // moved.
1031  if (_M_begin())
1032  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1033  __ht._M_reset();
1034  }
1035 
1036  template<typename _Key, typename _Value,
1037  typename _Alloc, typename _ExtractKey, typename _Equal,
1038  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1039  typename _Traits>
1040  void
1041  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1042  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1043  _M_move_assign(_Hashtable&& __ht, std::false_type)
1044  {
1045  if (__ht._M_node_allocator() == this->_M_node_allocator())
1046  _M_move_assign(std::move(__ht), std::true_type());
1047  else
1048  {
1049  // Can't move memory, move elements then.
1050  __bucket_type* __former_buckets = nullptr;
1051  size_type __former_bucket_count = _M_bucket_count;
1052  const __rehash_state& __former_state = _M_rehash_policy._M_state();
1053 
1054  if (_M_bucket_count != __ht._M_bucket_count)
1055  {
1056  __former_buckets = _M_buckets;
1057  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1058  _M_bucket_count = __ht._M_bucket_count;
1059  }
1060  else
1061  __builtin_memset(_M_buckets, 0,
1062  _M_bucket_count * sizeof(__bucket_type));
1063 
1064  __try
1065  {
1066  __hashtable_base::operator=(std::move(__ht));
1067  _M_element_count = __ht._M_element_count;
1068  _M_rehash_policy = __ht._M_rehash_policy;
1069  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1070  _M_before_begin._M_nxt = nullptr;
1071  _M_assign(__ht,
1072  [&__roan](__node_type* __n)
1073  { return __roan(std::move_if_noexcept(__n->_M_v())); });
1074  __ht.clear();
1075  }
1076  __catch(...)
1077  {
1078  if (__former_buckets)
1079  {
1080  _M_deallocate_buckets();
1081  _M_rehash_policy._M_reset(__former_state);
1082  _M_buckets = __former_buckets;
1083  _M_bucket_count = __former_bucket_count;
1084  }
1085  __builtin_memset(_M_buckets, 0,
1086  _M_bucket_count * sizeof(__bucket_type));
1087  __throw_exception_again;
1088  }
1089  }
1090  }
1091 
1092  template<typename _Key, typename _Value,
1093  typename _Alloc, typename _ExtractKey, typename _Equal,
1094  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1095  typename _Traits>
1096  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1097  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1098  _Hashtable(const _Hashtable& __ht)
1099  : __hashtable_base(__ht),
1100  __map_base(__ht),
1101  __rehash_base(__ht),
1102  __hashtable_alloc(
1103  __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1104  _M_buckets(),
1105  _M_bucket_count(__ht._M_bucket_count),
1106  _M_element_count(__ht._M_element_count),
1107  _M_rehash_policy(__ht._M_rehash_policy)
1108  {
1109  _M_assign(__ht,
1110  [this](const __node_type* __n)
1111  { return this->_M_allocate_node(__n->_M_v()); });
1112  }
1113 
1114  template<typename _Key, typename _Value,
1115  typename _Alloc, typename _ExtractKey, typename _Equal,
1116  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1117  typename _Traits>
1118  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1119  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1120  _Hashtable(_Hashtable&& __ht) noexcept
1121  : __hashtable_base(__ht),
1122  __map_base(__ht),
1123  __rehash_base(__ht),
1124  __hashtable_alloc(std::move(__ht._M_base_alloc())),
1125  _M_buckets(__ht._M_buckets),
1126  _M_bucket_count(__ht._M_bucket_count),
1127  _M_before_begin(__ht._M_before_begin._M_nxt),
1128  _M_element_count(__ht._M_element_count),
1129  _M_rehash_policy(__ht._M_rehash_policy)
1130  {
1131  // Update, if necessary, buckets if __ht is using its single bucket.
1132  if (__ht._M_uses_single_bucket())
1133  {
1134  _M_buckets = &_M_single_bucket;
1135  _M_single_bucket = __ht._M_single_bucket;
1136  }
1137 
1138  // Update, if necessary, bucket pointing to before begin that hasn't
1139  // moved.
1140  if (_M_begin())
1141  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1142 
1143  __ht._M_reset();
1144  }
1145 
1146  template<typename _Key, typename _Value,
1147  typename _Alloc, typename _ExtractKey, typename _Equal,
1148  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1149  typename _Traits>
1150  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1151  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1152  _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1153  : __hashtable_base(__ht),
1154  __map_base(__ht),
1155  __rehash_base(__ht),
1156  __hashtable_alloc(__node_alloc_type(__a)),
1157  _M_buckets(),
1158  _M_bucket_count(__ht._M_bucket_count),
1159  _M_element_count(__ht._M_element_count),
1160  _M_rehash_policy(__ht._M_rehash_policy)
1161  {
1162  _M_assign(__ht,
1163  [this](const __node_type* __n)
1164  { return this->_M_allocate_node(__n->_M_v()); });
1165  }
1166 
1167  template<typename _Key, typename _Value,
1168  typename _Alloc, typename _ExtractKey, typename _Equal,
1169  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1170  typename _Traits>
1171  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1172  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1173  _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1174  : __hashtable_base(__ht),
1175  __map_base(__ht),
1176  __rehash_base(__ht),
1177  __hashtable_alloc(__node_alloc_type(__a)),
1178  _M_buckets(),
1179  _M_bucket_count(__ht._M_bucket_count),
1180  _M_element_count(__ht._M_element_count),
1181  _M_rehash_policy(__ht._M_rehash_policy)
1182  {
1183  if (__ht._M_node_allocator() == this->_M_node_allocator())
1184  {
1185  if (__ht._M_uses_single_bucket())
1186  {
1187  _M_buckets = &_M_single_bucket;
1188  _M_single_bucket = __ht._M_single_bucket;
1189  }
1190  else
1191  _M_buckets = __ht._M_buckets;
1192 
1193  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1194  // Update, if necessary, bucket pointing to before begin that hasn't
1195  // moved.
1196  if (_M_begin())
1197  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1198  __ht._M_reset();
1199  }
1200  else
1201  {
1202  _M_assign(__ht,
1203  [this](__node_type* __n)
1204  {
1205  return this->_M_allocate_node(
1206  std::move_if_noexcept(__n->_M_v()));
1207  });
1208  __ht.clear();
1209  }
1210  }
1211 
1212  template<typename _Key, typename _Value,
1213  typename _Alloc, typename _ExtractKey, typename _Equal,
1214  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1215  typename _Traits>
1216  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1217  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1218  ~_Hashtable() noexcept
1219  {
1220  clear();
1221  if (_M_buckets)
1222  _M_deallocate_buckets();
1223  }
1224 
1225  template<typename _Key, typename _Value,
1226  typename _Alloc, typename _ExtractKey, typename _Equal,
1227  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1228  typename _Traits>
1229  void
1230  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1231  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1232  swap(_Hashtable& __x)
1233  noexcept(__node_alloc_traits::_S_nothrow_swap())
1234  {
1235  // The only base class with member variables is hash_code_base.
1236  // We define _Hash_code_base::_M_swap because different
1237  // specializations have different members.
1238  this->_M_swap(__x);
1239 
1240  std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1241  std::swap(_M_rehash_policy, __x._M_rehash_policy);
1242 
1243  // Deal properly with potentially moved instances.
1244  if (this->_M_uses_single_bucket())
1245  {
1246  if (!__x._M_uses_single_bucket())
1247  {
1248  _M_buckets = __x._M_buckets;
1249  __x._M_buckets = &__x._M_single_bucket;
1250  }
1251  }
1252  else if (__x._M_uses_single_bucket())
1253  {
1254  __x._M_buckets = _M_buckets;
1255  _M_buckets = &_M_single_bucket;
1256  }
1257  else
1258  std::swap(_M_buckets, __x._M_buckets);
1259 
1260  std::swap(_M_bucket_count, __x._M_bucket_count);
1261  std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1262  std::swap(_M_element_count, __x._M_element_count);
1263  std::swap(_M_single_bucket, __x._M_single_bucket);
1264 
1265  // Fix buckets containing the _M_before_begin pointers that can't be
1266  // swapped.
1267  if (_M_begin())
1268  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1269 
1270  if (__x._M_begin())
1271  __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1272  = &__x._M_before_begin;
1273  }
1274 
1275  template<typename _Key, typename _Value,
1276  typename _Alloc, typename _ExtractKey, typename _Equal,
1277  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1278  typename _Traits>
1279  void
1280  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1281  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1282  __rehash_policy(const _RehashPolicy& __pol)
1283  {
1284  auto __do_rehash =
1285  __pol._M_need_rehash(_M_bucket_count, _M_element_count, 0);
1286  if (__do_rehash.first)
1287  _M_rehash(__do_rehash.second, _M_rehash_policy._M_state());
1288  _M_rehash_policy = __pol;
1289  }
1290 
1291  template<typename _Key, typename _Value,
1292  typename _Alloc, typename _ExtractKey, typename _Equal,
1293  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1294  typename _Traits>
1295  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1296  _H1, _H2, _Hash, _RehashPolicy,
1297  _Traits>::iterator
1298  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1299  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1300  find(const key_type& __k)
1301  {
1302  __hash_code __code = this->_M_hash_code(__k);
1303  std::size_t __n = _M_bucket_index(__k, __code);
1304  __node_type* __p = _M_find_node(__n, __k, __code);
1305  return __p ? iterator(__p) : end();
1306  }
1307 
1308  template<typename _Key, typename _Value,
1309  typename _Alloc, typename _ExtractKey, typename _Equal,
1310  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1311  typename _Traits>
1312  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1313  _H1, _H2, _Hash, _RehashPolicy,
1314  _Traits>::const_iterator
1315  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1316  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1317  find(const key_type& __k) const
1318  {
1319  __hash_code __code = this->_M_hash_code(__k);
1320  std::size_t __n = _M_bucket_index(__k, __code);
1321  __node_type* __p = _M_find_node(__n, __k, __code);
1322  return __p ? const_iterator(__p) : end();
1323  }
1324 
1325  template<typename _Key, typename _Value,
1326  typename _Alloc, typename _ExtractKey, typename _Equal,
1327  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1328  typename _Traits>
1329  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1330  _H1, _H2, _Hash, _RehashPolicy,
1331  _Traits>::size_type
1332  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1333  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1334  count(const key_type& __k) const
1335  {
1336  __hash_code __code = this->_M_hash_code(__k);
1337  std::size_t __n = _M_bucket_index(__k, __code);
1338  __node_type* __p = _M_bucket_begin(__n);
1339  if (!__p)
1340  return 0;
1341 
1342  std::size_t __result = 0;
1343  for (;; __p = __p->_M_next())
1344  {
1345  if (this->_M_equals(__k, __code, __p))
1346  ++__result;
1347  else if (__result)
1348  // All equivalent values are next to each other, if we
1349  // found a non-equivalent value after an equivalent one it
1350  // means that we won't find any new equivalent value.
1351  break;
1352  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1353  break;
1354  }
1355  return __result;
1356  }
1357 
1358  template<typename _Key, typename _Value,
1359  typename _Alloc, typename _ExtractKey, typename _Equal,
1360  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1361  typename _Traits>
1362  std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1363  _ExtractKey, _Equal, _H1,
1364  _H2, _Hash, _RehashPolicy,
1365  _Traits>::iterator,
1366  typename _Hashtable<_Key, _Value, _Alloc,
1367  _ExtractKey, _Equal, _H1,
1368  _H2, _Hash, _RehashPolicy,
1369  _Traits>::iterator>
1370  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1371  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1372  equal_range(const key_type& __k)
1373  {
1374  __hash_code __code = this->_M_hash_code(__k);
1375  std::size_t __n = _M_bucket_index(__k, __code);
1376  __node_type* __p = _M_find_node(__n, __k, __code);
1377 
1378  if (__p)
1379  {
1380  __node_type* __p1 = __p->_M_next();
1381  while (__p1 && _M_bucket_index(__p1) == __n
1382  && this->_M_equals(__k, __code, __p1))
1383  __p1 = __p1->_M_next();
1384 
1385  return std::make_pair(iterator(__p), iterator(__p1));
1386  }
1387  else
1388  return std::make_pair(end(), end());
1389  }
1390 
1391  template<typename _Key, typename _Value,
1392  typename _Alloc, typename _ExtractKey, typename _Equal,
1393  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1394  typename _Traits>
1395  std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1396  _ExtractKey, _Equal, _H1,
1397  _H2, _Hash, _RehashPolicy,
1398  _Traits>::const_iterator,
1399  typename _Hashtable<_Key, _Value, _Alloc,
1400  _ExtractKey, _Equal, _H1,
1401  _H2, _Hash, _RehashPolicy,
1402  _Traits>::const_iterator>
1403  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1404  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1405  equal_range(const key_type& __k) const
1406  {
1407  __hash_code __code = this->_M_hash_code(__k);
1408  std::size_t __n = _M_bucket_index(__k, __code);
1409  __node_type* __p = _M_find_node(__n, __k, __code);
1410 
1411  if (__p)
1412  {
1413  __node_type* __p1 = __p->_M_next();
1414  while (__p1 && _M_bucket_index(__p1) == __n
1415  && this->_M_equals(__k, __code, __p1))
1416  __p1 = __p1->_M_next();
1417 
1418  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1419  }
1420  else
1421  return std::make_pair(end(), end());
1422  }
1423 
1424  // Find the node whose key compares equal to k in the bucket n.
1425  // Return nullptr if no node is found.
1426  template<typename _Key, typename _Value,
1427  typename _Alloc, typename _ExtractKey, typename _Equal,
1428  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1429  typename _Traits>
1430  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1431  _Equal, _H1, _H2, _Hash, _RehashPolicy,
1432  _Traits>::__node_base*
1433  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1434  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1435  _M_find_before_node(size_type __n, const key_type& __k,
1436  __hash_code __code) const
1437  {
1438  __node_base* __prev_p = _M_buckets[__n];
1439  if (!__prev_p)
1440  return nullptr;
1441 
1442  for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1443  __p = __p->_M_next())
1444  {
1445  if (this->_M_equals(__k, __code, __p))
1446  return __prev_p;
1447 
1448  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1449  break;
1450  __prev_p = __p;
1451  }
1452  return nullptr;
1453  }
1454 
1455  template<typename _Key, typename _Value,
1456  typename _Alloc, typename _ExtractKey, typename _Equal,
1457  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1458  typename _Traits>
1459  void
1460  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1461  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1462  _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1463  {
1464  if (_M_buckets[__bkt])
1465  {
1466  // Bucket is not empty, we just need to insert the new node
1467  // after the bucket before begin.
1468  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1469  _M_buckets[__bkt]->_M_nxt = __node;
1470  }
1471  else
1472  {
1473  // The bucket is empty, the new node is inserted at the
1474  // beginning of the singly-linked list and the bucket will
1475  // contain _M_before_begin pointer.
1476  __node->_M_nxt = _M_before_begin._M_nxt;
1477  _M_before_begin._M_nxt = __node;
1478  if (__node->_M_nxt)
1479  // We must update former begin bucket that is pointing to
1480  // _M_before_begin.
1481  _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1482  _M_buckets[__bkt] = &_M_before_begin;
1483  }
1484  }
1485 
1486  template<typename _Key, typename _Value,
1487  typename _Alloc, typename _ExtractKey, typename _Equal,
1488  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1489  typename _Traits>
1490  void
1491  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1492  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1493  _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1494  size_type __next_bkt)
1495  {
1496  if (!__next || __next_bkt != __bkt)
1497  {
1498  // Bucket is now empty
1499  // First update next bucket if any
1500  if (__next)
1501  _M_buckets[__next_bkt] = _M_buckets[__bkt];
1502 
1503  // Second update before begin node if necessary
1504  if (&_M_before_begin == _M_buckets[__bkt])
1505  _M_before_begin._M_nxt = __next;
1506  _M_buckets[__bkt] = nullptr;
1507  }
1508  }
1509 
1510  template<typename _Key, typename _Value,
1511  typename _Alloc, typename _ExtractKey, typename _Equal,
1512  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1513  typename _Traits>
1514  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1515  _Equal, _H1, _H2, _Hash, _RehashPolicy,
1516  _Traits>::__node_base*
1517  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1518  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1519  _M_get_previous_node(size_type __bkt, __node_base* __n)
1520  {
1521  __node_base* __prev_n = _M_buckets[__bkt];
1522  while (__prev_n->_M_nxt != __n)
1523  __prev_n = __prev_n->_M_nxt;
1524  return __prev_n;
1525  }
1526 
1527  template<typename _Key, typename _Value,
1528  typename _Alloc, typename _ExtractKey, typename _Equal,
1529  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1530  typename _Traits>
1531  template<typename... _Args>
1532  std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1533  _ExtractKey, _Equal, _H1,
1534  _H2, _Hash, _RehashPolicy,
1535  _Traits>::iterator, bool>
1536  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1537  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1538  _M_emplace(std::true_type, _Args&&... __args)
1539  {
1540  // First build the node to get access to the hash code
1541  __node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1542  const key_type& __k = this->_M_extract()(__node->_M_v());
1543  __hash_code __code;
1544  __try
1545  {
1546  __code = this->_M_hash_code(__k);
1547  }
1548  __catch(...)
1549  {
1550  this->_M_deallocate_node(__node);
1551  __throw_exception_again;
1552  }
1553 
1554  size_type __bkt = _M_bucket_index(__k, __code);
1555  if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1556  {
1557  // There is already an equivalent node, no insertion
1558  this->_M_deallocate_node(__node);
1559  return std::make_pair(iterator(__p), false);
1560  }
1561 
1562  // Insert the node
1563  return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1564  true);
1565  }
1566 
1567  template<typename _Key, typename _Value,
1568  typename _Alloc, typename _ExtractKey, typename _Equal,
1569  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1570  typename _Traits>
1571  template<typename... _Args>
1572  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1573  _H1, _H2, _Hash, _RehashPolicy,
1574  _Traits>::iterator
1575  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1576  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1577  _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1578  {
1579  // First build the node to get its hash code.
1580  __node_type* __node =
1581  this->_M_allocate_node(std::forward<_Args>(__args)...);
1582 
1583  __hash_code __code;
1584  __try
1585  {
1586  __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1587  }
1588  __catch(...)
1589  {
1590  this->_M_deallocate_node(__node);
1591  __throw_exception_again;
1592  }
1593 
1594  return _M_insert_multi_node(__hint._M_cur, __code, __node);
1595  }
1596 
1597  template<typename _Key, typename _Value,
1598  typename _Alloc, typename _ExtractKey, typename _Equal,
1599  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1600  typename _Traits>
1601  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1602  _H1, _H2, _Hash, _RehashPolicy,
1603  _Traits>::iterator
1604  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1605  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1606  _M_insert_unique_node(size_type __bkt, __hash_code __code,
1607  __node_type* __node)
1608  {
1609  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1610  std::pair<bool, std::size_t> __do_rehash
1611  = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1612 
1613  __try
1614  {
1615  if (__do_rehash.first)
1616  {
1617  _M_rehash(__do_rehash.second, __saved_state);
1618  __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1619  }
1620 
1621  this->_M_store_code(__node, __code);
1622 
1623  // Always insert at the beginning of the bucket.
1624  _M_insert_bucket_begin(__bkt, __node);
1625  ++_M_element_count;
1626  return iterator(__node);
1627  }
1628  __catch(...)
1629  {
1630  this->_M_deallocate_node(__node);
1631  __throw_exception_again;
1632  }
1633  }
1634 
1635  // Insert node, in bucket bkt if no rehash (assumes no element with its key
1636  // already present). Take ownership of the node, deallocate it on exception.
1637  template<typename _Key, typename _Value,
1638  typename _Alloc, typename _ExtractKey, typename _Equal,
1639  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1640  typename _Traits>
1641  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1642  _H1, _H2, _Hash, _RehashPolicy,
1643  _Traits>::iterator
1644  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1645  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1646  _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1647  __node_type* __node)
1648  {
1649  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1650  std::pair<bool, std::size_t> __do_rehash
1651  = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1652 
1653  __try
1654  {
1655  if (__do_rehash.first)
1656  _M_rehash(__do_rehash.second, __saved_state);
1657 
1658  this->_M_store_code(__node, __code);
1659  const key_type& __k = this->_M_extract()(__node->_M_v());
1660  size_type __bkt = _M_bucket_index(__k, __code);
1661 
1662  // Find the node before an equivalent one or use hint if it exists and
1663  // if it is equivalent.
1664  __node_base* __prev
1665  = __builtin_expect(__hint != nullptr, false)
1666  && this->_M_equals(__k, __code, __hint)
1667  ? __hint
1668  : _M_find_before_node(__bkt, __k, __code);
1669  if (__prev)
1670  {
1671  // Insert after the node before the equivalent one.
1672  __node->_M_nxt = __prev->_M_nxt;
1673  __prev->_M_nxt = __node;
1674  if (__builtin_expect(__prev == __hint, false))
1675  // hint might be the last bucket node, in this case we need to
1676  // update next bucket.
1677  if (__node->_M_nxt
1678  && !this->_M_equals(__k, __code, __node->_M_next()))
1679  {
1680  size_type __next_bkt = _M_bucket_index(__node->_M_next());
1681  if (__next_bkt != __bkt)
1682  _M_buckets[__next_bkt] = __node;
1683  }
1684  }
1685  else
1686  // The inserted node has no equivalent in the
1687  // hashtable. We must insert the new node at the
1688  // beginning of the bucket to preserve equivalent
1689  // elements' relative positions.
1690  _M_insert_bucket_begin(__bkt, __node);
1691  ++_M_element_count;
1692  return iterator(__node);
1693  }
1694  __catch(...)
1695  {
1696  this->_M_deallocate_node(__node);
1697  __throw_exception_again;
1698  }
1699  }
1700 
1701  // Insert v if no element with its key is already present.
1702  template<typename _Key, typename _Value,
1703  typename _Alloc, typename _ExtractKey, typename _Equal,
1704  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1705  typename _Traits>
1706  template<typename _Arg, typename _NodeGenerator>
1707  std::pair<typename _Hashtable<_Key, _Value, _Alloc,
1708  _ExtractKey, _Equal, _H1,
1709  _H2, _Hash, _RehashPolicy,
1710  _Traits>::iterator, bool>
1711  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1712  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1713  _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1714  {
1715  const key_type& __k = this->_M_extract()(__v);
1716  __hash_code __code = this->_M_hash_code(__k);
1717  size_type __bkt = _M_bucket_index(__k, __code);
1718 
1719  __node_type* __n = _M_find_node(__bkt, __k, __code);
1720  if (__n)
1721  return std::make_pair(iterator(__n), false);
1722 
1723  __n = __node_gen(std::forward<_Arg>(__v));
1724  return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1725  }
1726 
1727  // Insert v unconditionally.
1728  template<typename _Key, typename _Value,
1729  typename _Alloc, typename _ExtractKey, typename _Equal,
1730  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1731  typename _Traits>
1732  template<typename _Arg, typename _NodeGenerator>
1733  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1734  _H1, _H2, _Hash, _RehashPolicy,
1735  _Traits>::iterator
1736  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1737  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1738  _M_insert(const_iterator __hint, _Arg&& __v,
1739  const _NodeGenerator& __node_gen,
1740  std::false_type)
1741  {
1742  // First compute the hash code so that we don't do anything if it
1743  // throws.
1744  __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1745 
1746  // Second allocate new node so that we don't rehash if it throws.
1747  __node_type* __node = __node_gen(std::forward<_Arg>(__v));
1748 
1749  return _M_insert_multi_node(__hint._M_cur, __code, __node);
1750  }
1751 
1752  template<typename _Key, typename _Value,
1753  typename _Alloc, typename _ExtractKey, typename _Equal,
1754  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1755  typename _Traits>
1756  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1757  _H1, _H2, _Hash, _RehashPolicy,
1758  _Traits>::iterator
1759  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1760  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1761  erase(const_iterator __it)
1762  {
1763  __node_type* __n = __it._M_cur;
1764  std::size_t __bkt = _M_bucket_index(__n);
1765 
1766  // Look for previous node to unlink it from the erased one, this
1767  // is why we need buckets to contain the before begin to make
1768  // this search fast.
1769  __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1770  return _M_erase(__bkt, __prev_n, __n);
1771  }
1772 
1773  template<typename _Key, typename _Value,
1774  typename _Alloc, typename _ExtractKey, typename _Equal,
1775  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1776  typename _Traits>
1777  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1778  _H1, _H2, _Hash, _RehashPolicy,
1779  _Traits>::iterator
1780  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1781  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1782  _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1783  {
1784  if (__prev_n == _M_buckets[__bkt])
1785  _M_remove_bucket_begin(__bkt, __n->_M_next(),
1786  __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1787  else if (__n->_M_nxt)
1788  {
1789  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1790  if (__next_bkt != __bkt)
1791  _M_buckets[__next_bkt] = __prev_n;
1792  }
1793 
1794  __prev_n->_M_nxt = __n->_M_nxt;
1795  iterator __result(__n->_M_next());
1796  this->_M_deallocate_node(__n);
1797  --_M_element_count;
1798 
1799  return __result;
1800  }
1801 
1802  template<typename _Key, typename _Value,
1803  typename _Alloc, typename _ExtractKey, typename _Equal,
1804  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1805  typename _Traits>
1806  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1807  _H1, _H2, _Hash, _RehashPolicy,
1808  _Traits>::size_type
1809  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1810  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1811  _M_erase(std::true_type, const key_type& __k)
1812  {
1813  __hash_code __code = this->_M_hash_code(__k);
1814  std::size_t __bkt = _M_bucket_index(__k, __code);
1815 
1816  // Look for the node before the first matching node.
1817  __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1818  if (!__prev_n)
1819  return 0;
1820 
1821  // We found a matching node, erase it.
1822  __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1823  _M_erase(__bkt, __prev_n, __n);
1824  return 1;
1825  }
1826 
1827  template<typename _Key, typename _Value,
1828  typename _Alloc, typename _ExtractKey, typename _Equal,
1829  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1830  typename _Traits>
1831  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1832  _H1, _H2, _Hash, _RehashPolicy,
1833  _Traits>::size_type
1834  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1835  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1836  _M_erase(std::false_type, const key_type& __k)
1837  {
1838  __hash_code __code = this->_M_hash_code(__k);
1839  std::size_t __bkt = _M_bucket_index(__k, __code);
1840 
1841  // Look for the node before the first matching node.
1842  __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1843  if (!__prev_n)
1844  return 0;
1845 
1846  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1847  // 526. Is it undefined if a function in the standard changes
1848  // in parameters?
1849  // We use one loop to find all matching nodes and another to deallocate
1850  // them so that the key stays valid during the first loop. It might be
1851  // invalidated indirectly when destroying nodes.
1852  __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1853  __node_type* __n_last = __n;
1854  std::size_t __n_last_bkt = __bkt;
1855  do
1856  {
1857  __n_last = __n_last->_M_next();
1858  if (!__n_last)
1859  break;
1860  __n_last_bkt = _M_bucket_index(__n_last);
1861  }
1862  while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1863 
1864  // Deallocate nodes.
1865  size_type __result = 0;
1866  do
1867  {
1868  __node_type* __p = __n->_M_next();
1869  this->_M_deallocate_node(__n);
1870  __n = __p;
1871  ++__result;
1872  --_M_element_count;
1873  }
1874  while (__n != __n_last);
1875 
1876  if (__prev_n == _M_buckets[__bkt])
1877  _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1878  else if (__n_last && __n_last_bkt != __bkt)
1879  _M_buckets[__n_last_bkt] = __prev_n;
1880  __prev_n->_M_nxt = __n_last;
1881  return __result;
1882  }
1883 
1884  template<typename _Key, typename _Value,
1885  typename _Alloc, typename _ExtractKey, typename _Equal,
1886  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1887  typename _Traits>
1888  typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1889  _H1, _H2, _Hash, _RehashPolicy,
1890  _Traits>::iterator
1891  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1892  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1893  erase(const_iterator __first, const_iterator __last)
1894  {
1895  __node_type* __n = __first._M_cur;
1896  __node_type* __last_n = __last._M_cur;
1897  if (__n == __last_n)
1898  return iterator(__n);
1899 
1900  std::size_t __bkt = _M_bucket_index(__n);
1901 
1902  __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1903  bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1904  std::size_t __n_bkt = __bkt;
1905  for (;;)
1906  {
1907  do
1908  {
1909  __node_type* __tmp = __n;
1910  __n = __n->_M_next();
1911  this->_M_deallocate_node(__tmp);
1912  --_M_element_count;
1913  if (!__n)
1914  break;
1915  __n_bkt = _M_bucket_index(__n);
1916  }
1917  while (__n != __last_n && __n_bkt == __bkt);
1918  if (__is_bucket_begin)
1919  _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1920  if (__n == __last_n)
1921  break;
1922  __is_bucket_begin = true;
1923  __bkt = __n_bkt;
1924  }
1925 
1926  if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1927  _M_buckets[__n_bkt] = __prev_n;
1928  __prev_n->_M_nxt = __n;
1929  return iterator(__n);
1930  }
1931 
1932  template<typename _Key, typename _Value,
1933  typename _Alloc, typename _ExtractKey, typename _Equal,
1934  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1935  typename _Traits>
1936  void
1937  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1938  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1939  clear() noexcept
1940  {
1941  this->_M_deallocate_nodes(_M_begin());
1942  __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1943  _M_element_count = 0;
1944  _M_before_begin._M_nxt = nullptr;
1945  }
1946 
1947  template<typename _Key, typename _Value,
1948  typename _Alloc, typename _ExtractKey, typename _Equal,
1949  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1950  typename _Traits>
1951  void
1952  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1953  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1954  rehash(size_type __n)
1955  {
1956  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1957  std::size_t __buckets
1958  = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1959  __n);
1960  __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1961 
1962  if (__buckets != _M_bucket_count)
1963  _M_rehash(__buckets, __saved_state);
1964  else
1965  // No rehash, restore previous state to keep a consistent state.
1966  _M_rehash_policy._M_reset(__saved_state);
1967  }
1968 
1969  template<typename _Key, typename _Value,
1970  typename _Alloc, typename _ExtractKey, typename _Equal,
1971  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1972  typename _Traits>
1973  void
1974  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1975  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1976  _M_rehash(size_type __n, const __rehash_state& __state)
1977  {
1978  __try
1979  {
1980  _M_rehash_aux(__n, __unique_keys());
1981  }
1982  __catch(...)
1983  {
1984  // A failure here means that buckets allocation failed. We only
1985  // have to restore hash policy previous state.
1986  _M_rehash_policy._M_reset(__state);
1987  __throw_exception_again;
1988  }
1989  }
1990 
1991  // Rehash when there is no equivalent elements.
1992  template<typename _Key, typename _Value,
1993  typename _Alloc, typename _ExtractKey, typename _Equal,
1994  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1995  typename _Traits>
1996  void
1997  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1998  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1999  _M_rehash_aux(size_type __n, std::true_type)
2000  {
2001  __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2002  __node_type* __p = _M_begin();
2003  _M_before_begin._M_nxt = nullptr;
2004  std::size_t __bbegin_bkt = 0;
2005  while (__p)
2006  {
2007  __node_type* __next = __p->_M_next();
2008  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2009  if (!__new_buckets[__bkt])
2010  {
2011  __p->_M_nxt = _M_before_begin._M_nxt;
2012  _M_before_begin._M_nxt = __p;
2013  __new_buckets[__bkt] = &_M_before_begin;
2014  if (__p->_M_nxt)
2015  __new_buckets[__bbegin_bkt] = __p;
2016  __bbegin_bkt = __bkt;
2017  }
2018  else
2019  {
2020  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2021  __new_buckets[__bkt]->_M_nxt = __p;
2022  }
2023  __p = __next;
2024  }
2025 
2026  _M_deallocate_buckets();
2027  _M_bucket_count = __n;
2028  _M_buckets = __new_buckets;
2029  }
2030 
2031  // Rehash when there can be equivalent elements, preserve their relative
2032  // order.
2033  template<typename _Key, typename _Value,
2034  typename _Alloc, typename _ExtractKey, typename _Equal,
2035  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2036  typename _Traits>
2037  void
2038  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2039  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2040  _M_rehash_aux(size_type __n, std::false_type)
2041  {
2042  __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2043 
2044  __node_type* __p = _M_begin();
2045  _M_before_begin._M_nxt = nullptr;
2046  std::size_t __bbegin_bkt = 0;
2047  std::size_t __prev_bkt = 0;
2048  __node_type* __prev_p = nullptr;
2049  bool __check_bucket = false;
2050 
2051  while (__p)
2052  {
2053  __node_type* __next = __p->_M_next();
2054  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2055 
2056  if (__prev_p && __prev_bkt == __bkt)
2057  {
2058  // Previous insert was already in this bucket, we insert after
2059  // the previously inserted one to preserve equivalent elements
2060  // relative order.
2061  __p->_M_nxt = __prev_p->_M_nxt;
2062  __prev_p->_M_nxt = __p;
2063 
2064  // Inserting after a node in a bucket require to check that we
2065  // haven't change the bucket last node, in this case next
2066  // bucket containing its before begin node must be updated. We
2067  // schedule a check as soon as we move out of the sequence of
2068  // equivalent nodes to limit the number of checks.
2069  __check_bucket = true;
2070  }
2071  else
2072  {
2073  if (__check_bucket)
2074  {
2075  // Check if we shall update the next bucket because of
2076  // insertions into __prev_bkt bucket.
2077  if (__prev_p->_M_nxt)
2078  {
2079  std::size_t __next_bkt
2080  = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2081  __n);
2082  if (__next_bkt != __prev_bkt)
2083  __new_buckets[__next_bkt] = __prev_p;
2084  }
2085  __check_bucket = false;
2086  }
2087 
2088  if (!__new_buckets[__bkt])
2089  {
2090  __p->_M_nxt = _M_before_begin._M_nxt;
2091  _M_before_begin._M_nxt = __p;
2092  __new_buckets[__bkt] = &_M_before_begin;
2093  if (__p->_M_nxt)
2094  __new_buckets[__bbegin_bkt] = __p;
2095  __bbegin_bkt = __bkt;
2096  }
2097  else
2098  {
2099  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2100  __new_buckets[__bkt]->_M_nxt = __p;
2101  }
2102  }
2103  __prev_p = __p;
2104  __prev_bkt = __bkt;
2105  __p = __next;
2106  }
2107 
2108  if (__check_bucket && __prev_p->_M_nxt)
2109  {
2110  std::size_t __next_bkt
2111  = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2112  if (__next_bkt != __prev_bkt)
2113  __new_buckets[__next_bkt] = __prev_p;
2114  }
2115 
2116  _M_deallocate_buckets();
2117  _M_bucket_count = __n;
2118  _M_buckets = __new_buckets;
2119  }
2120 
2121 _GLIBCXX_END_NAMESPACE_VERSION
2122 } // namespace std
2123 
2124 #endif // _HASHTABLE_H
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:101
constexpr pair< typename __decay_and_strip< _T1 >::__type, typename __decay_and_strip< _T2 >::__type > make_pair(_T1 &&__x, _T2 &&__y)
A convenience wrapper for creating a pair from two objects.
Definition: stl_pair.h:276
Uniform interface to C++98 and C++0x allocators.
auto end(_Container &__cont) -> decltype(__cont.end())
Return an iterator pointing to one past the last element of the container.
Definition: range_access.h:68
Uniform interface to all allocator types.
const _Tp & max(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:217
auto begin(_Container &__cont) -> decltype(__cont.begin())
Return an iterator pointing to the first element of the container.
Definition: range_access.h:48
iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.
_T1 first
second_type is the second bound type
Definition: stl_pair.h:101
ISO C++ entities toplevel namespace is std.
Node const_iterators, used to iterate through all the hashtable.
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:96
void swap(_Tp &, _Tp &) noexcept(__and_< is_nothrow_move_constructible< _Tp >, is_nothrow_move_assignable< _Tp >>::value)
Swaps two values.
Definition: move.h:166
_T2 second
first is a copy of the first object
Definition: stl_pair.h:102
Node iterators, used to iterate through all the hashtable.
constexpr conditional< __move_if_noexcept_cond< _Tp >::value, const _Tp &, _Tp && >::type move_if_noexcept(_Tp &__x) noexcept
Conditionally convert a value to an rvalue.
Definition: move.h:121