libstdc++
hashtable_policy.h
Go to the documentation of this file.
1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
2 
3 // Copyright (C) 2010-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable_policy.h
26  * This is an internal header file, included by other library headers.
27  * Do not attempt to use it directly.
28  * @headername{unordered_map,unordered_set}
29  */
30 
31 #ifndef _HASHTABLE_POLICY_H
32 #define _HASHTABLE_POLICY_H 1
33 
34 namespace std _GLIBCXX_VISIBILITY(default)
35 {
36 _GLIBCXX_BEGIN_NAMESPACE_VERSION
37 
38  template<typename _Key, typename _Value, typename _Alloc,
39  typename _ExtractKey, typename _Equal,
40  typename _H1, typename _H2, typename _Hash,
41  typename _RehashPolicy, typename _Traits>
42  class _Hashtable;
43 
44 _GLIBCXX_END_NAMESPACE_VERSION
45 
46 namespace __detail
47 {
48 _GLIBCXX_BEGIN_NAMESPACE_VERSION
49 
50  /**
51  * @defgroup hashtable-detail Base and Implementation Classes
52  * @ingroup unordered_associative_containers
53  * @{
54  */
55  template<typename _Key, typename _Value,
56  typename _ExtractKey, typename _Equal,
57  typename _H1, typename _H2, typename _Hash, typename _Traits>
59 
60  // Helper function: return distance(first, last) for forward
61  // iterators, or 0 for input iterators.
62  template<class _Iterator>
63  inline typename std::iterator_traits<_Iterator>::difference_type
64  __distance_fw(_Iterator __first, _Iterator __last,
66  { return 0; }
67 
68  template<class _Iterator>
69  inline typename std::iterator_traits<_Iterator>::difference_type
70  __distance_fw(_Iterator __first, _Iterator __last,
72  { return std::distance(__first, __last); }
73 
74  template<class _Iterator>
75  inline typename std::iterator_traits<_Iterator>::difference_type
76  __distance_fw(_Iterator __first, _Iterator __last)
77  {
78  typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
79  return __distance_fw(__first, __last, _Tag());
80  }
81 
82  // Helper type used to detect whether the hash functor is noexcept.
83  template <typename _Key, typename _Hash>
84  struct __is_noexcept_hash : std::integral_constant<bool,
85  noexcept(declval<const _Hash&>()(declval<const _Key&>()))>
86  { };
87 
88  struct _Identity
89  {
90  template<typename _Tp>
91  _Tp&&
92  operator()(_Tp&& __x) const
93  { return std::forward<_Tp>(__x); }
94  };
95 
96  struct _Select1st
97  {
98  template<typename _Tp>
99  auto
100  operator()(_Tp&& __x) const
101  -> decltype(std::get<0>(std::forward<_Tp>(__x)))
102  { return std::get<0>(std::forward<_Tp>(__x)); }
103  };
104 
105  template<typename _NodeAlloc>
107 
108  // Functor recycling a pool of nodes and using allocation once the pool is
109  // empty.
110  template<typename _NodeAlloc>
111  struct _ReuseOrAllocNode
112  {
113  private:
114  using __node_alloc_type = _NodeAlloc;
115  using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
116  using __value_alloc_type = typename __hashtable_alloc::__value_alloc_type;
117  using __value_alloc_traits =
118  typename __hashtable_alloc::__value_alloc_traits;
119  using __node_alloc_traits =
120  typename __hashtable_alloc::__node_alloc_traits;
121  using __node_type = typename __hashtable_alloc::__node_type;
122 
123  public:
124  _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
125  : _M_nodes(__nodes), _M_h(__h) { }
126  _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
127 
128  ~_ReuseOrAllocNode()
129  { _M_h._M_deallocate_nodes(_M_nodes); }
130 
131  template<typename _Arg>
132  __node_type*
133  operator()(_Arg&& __arg) const
134  {
135  if (_M_nodes)
136  {
137  __node_type* __node = _M_nodes;
138  _M_nodes = _M_nodes->_M_next();
139  __node->_M_nxt = nullptr;
140  __value_alloc_type __a(_M_h._M_node_allocator());
141  __value_alloc_traits::destroy(__a, __node->_M_valptr());
142  __try
143  {
144  __value_alloc_traits::construct(__a, __node->_M_valptr(),
145  std::forward<_Arg>(__arg));
146  }
147  __catch(...)
148  {
149  __node->~__node_type();
150  __node_alloc_traits::deallocate(_M_h._M_node_allocator(),
151  __node, 1);
152  __throw_exception_again;
153  }
154  return __node;
155  }
156  return _M_h._M_allocate_node(std::forward<_Arg>(__arg));
157  }
158 
159  private:
160  mutable __node_type* _M_nodes;
161  __hashtable_alloc& _M_h;
162  };
163 
164  // Functor similar to the previous one but without any pool of nodes to
165  // recycle.
166  template<typename _NodeAlloc>
167  struct _AllocNode
168  {
169  private:
170  using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
171  using __node_type = typename __hashtable_alloc::__node_type;
172 
173  public:
174  _AllocNode(__hashtable_alloc& __h)
175  : _M_h(__h) { }
176 
177  template<typename _Arg>
178  __node_type*
179  operator()(_Arg&& __arg) const
180  { return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); }
181 
182  private:
183  __hashtable_alloc& _M_h;
184  };
185 
186  // Auxiliary types used for all instantiations of _Hashtable nodes
187  // and iterators.
188 
189  /**
190  * struct _Hashtable_traits
191  *
192  * Important traits for hash tables.
193  *
194  * @tparam _Cache_hash_code Boolean value. True if the value of
195  * the hash function is stored along with the value. This is a
196  * time-space tradeoff. Storing it may improve lookup speed by
197  * reducing the number of times we need to call the _Equal
198  * function.
199  *
200  * @tparam _Constant_iterators Boolean value. True if iterator and
201  * const_iterator are both constant iterator types. This is true
202  * for unordered_set and unordered_multiset, false for
203  * unordered_map and unordered_multimap.
204  *
205  * @tparam _Unique_keys Boolean value. True if the return value
206  * of _Hashtable::count(k) is always at most one, false if it may
207  * be an arbitrary number. This is true for unordered_set and
208  * unordered_map, false for unordered_multiset and
209  * unordered_multimap.
210  */
211  template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
213  {
214  template<bool _Cond>
215  using __bool_constant = integral_constant<bool, _Cond>;
216 
217  using __hash_cached = __bool_constant<_Cache_hash_code>;
218  using __constant_iterators = __bool_constant<_Constant_iterators>;
219  using __unique_keys = __bool_constant<_Unique_keys>;
220  };
221 
222  /**
223  * struct _Hash_node_base
224  *
225  * Nodes, used to wrap elements stored in the hash table. A policy
226  * template parameter of class template _Hashtable controls whether
227  * nodes also store a hash code. In some cases (e.g. strings) this
228  * may be a performance win.
229  */
231  {
232  _Hash_node_base* _M_nxt;
233 
234  _Hash_node_base() noexcept : _M_nxt() { }
235 
236  _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
237  };
238 
239  /**
240  * struct _Hash_node_value_base
241  *
242  * Node type with the value to store.
243  */
244  template<typename _Value>
246  {
247  typedef _Value value_type;
248 
249  __gnu_cxx::__aligned_buffer<_Value> _M_storage;
250 
251  _Value*
252  _M_valptr() noexcept
253  { return _M_storage._M_ptr(); }
254 
255  const _Value*
256  _M_valptr() const noexcept
257  { return _M_storage._M_ptr(); }
258 
259  _Value&
260  _M_v() noexcept
261  { return *_M_valptr(); }
262 
263  const _Value&
264  _M_v() const noexcept
265  { return *_M_valptr(); }
266  };
267 
268  /**
269  * Primary template struct _Hash_node.
270  */
271  template<typename _Value, bool _Cache_hash_code>
272  struct _Hash_node;
273 
274  /**
275  * Specialization for nodes with caches, struct _Hash_node.
276  *
277  * Base class is __detail::_Hash_node_value_base.
278  */
279  template<typename _Value>
280  struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value>
281  {
282  std::size_t _M_hash_code;
283 
284  _Hash_node*
285  _M_next() const noexcept
286  { return static_cast<_Hash_node*>(this->_M_nxt); }
287  };
288 
289  /**
290  * Specialization for nodes without caches, struct _Hash_node.
291  *
292  * Base class is __detail::_Hash_node_value_base.
293  */
294  template<typename _Value>
295  struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value>
296  {
297  _Hash_node*
298  _M_next() const noexcept
299  { return static_cast<_Hash_node*>(this->_M_nxt); }
300  };
301 
302  /// Base class for node iterators.
303  template<typename _Value, bool _Cache_hash_code>
305  {
307 
308  __node_type* _M_cur;
309 
310  _Node_iterator_base(__node_type* __p) noexcept
311  : _M_cur(__p) { }
312 
313  void
314  _M_incr() noexcept
315  { _M_cur = _M_cur->_M_next(); }
316  };
317 
318  template<typename _Value, bool _Cache_hash_code>
319  inline bool
320  operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
322  noexcept
323  { return __x._M_cur == __y._M_cur; }
324 
325  template<typename _Value, bool _Cache_hash_code>
326  inline bool
327  operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
328  const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
329  noexcept
330  { return __x._M_cur != __y._M_cur; }
331 
332  /// Node iterators, used to iterate through all the hashtable.
333  template<typename _Value, bool __constant_iterators, bool __cache>
335  : public _Node_iterator_base<_Value, __cache>
336  {
337  private:
339  using __node_type = typename __base_type::__node_type;
340 
341  public:
342  typedef _Value value_type;
343  typedef std::ptrdiff_t difference_type;
345 
346  using pointer = typename std::conditional<__constant_iterators,
347  const _Value*, _Value*>::type;
348 
349  using reference = typename std::conditional<__constant_iterators,
350  const _Value&, _Value&>::type;
351 
352  _Node_iterator() noexcept
353  : __base_type(0) { }
354 
355  explicit
356  _Node_iterator(__node_type* __p) noexcept
357  : __base_type(__p) { }
358 
359  reference
360  operator*() const noexcept
361  { return this->_M_cur->_M_v(); }
362 
363  pointer
364  operator->() const noexcept
365  { return this->_M_cur->_M_valptr(); }
366 
368  operator++() noexcept
369  {
370  this->_M_incr();
371  return *this;
372  }
373 
375  operator++(int) noexcept
376  {
377  _Node_iterator __tmp(*this);
378  this->_M_incr();
379  return __tmp;
380  }
381  };
382 
383  /// Node const_iterators, used to iterate through all the hashtable.
384  template<typename _Value, bool __constant_iterators, bool __cache>
386  : public _Node_iterator_base<_Value, __cache>
387  {
388  private:
390  using __node_type = typename __base_type::__node_type;
391 
392  public:
393  typedef _Value value_type;
394  typedef std::ptrdiff_t difference_type;
396 
397  typedef const _Value* pointer;
398  typedef const _Value& reference;
399 
400  _Node_const_iterator() noexcept
401  : __base_type(0) { }
402 
403  explicit
404  _Node_const_iterator(__node_type* __p) noexcept
405  : __base_type(__p) { }
406 
407  _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
408  __cache>& __x) noexcept
409  : __base_type(__x._M_cur) { }
410 
411  reference
412  operator*() const noexcept
413  { return this->_M_cur->_M_v(); }
414 
415  pointer
416  operator->() const noexcept
417  { return this->_M_cur->_M_valptr(); }
418 
420  operator++() noexcept
421  {
422  this->_M_incr();
423  return *this;
424  }
425 
427  operator++(int) noexcept
428  {
429  _Node_const_iterator __tmp(*this);
430  this->_M_incr();
431  return __tmp;
432  }
433  };
434 
435  // Many of class template _Hashtable's template parameters are policy
436  // classes. These are defaults for the policies.
437 
438  /// Default range hashing function: use division to fold a large number
439  /// into the range [0, N).
441  {
442  typedef std::size_t first_argument_type;
443  typedef std::size_t second_argument_type;
444  typedef std::size_t result_type;
445 
446  result_type
447  operator()(first_argument_type __num,
448  second_argument_type __den) const noexcept
449  { return __num % __den; }
450  };
451 
452  /// Default ranged hash function H. In principle it should be a
453  /// function object composed from objects of type H1 and H2 such that
454  /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
455  /// h1 and h2. So instead we'll just use a tag to tell class template
456  /// hashtable to do that composition.
458 
459  /// Default value for rehash policy. Bucket size is (usually) the
460  /// smallest prime that keeps the load factor small enough.
462  {
463  _Prime_rehash_policy(float __z = 1.0)
464  : _M_max_load_factor(__z), _M_next_resize(0) { }
465 
466  float
467  max_load_factor() const noexcept
468  { return _M_max_load_factor; }
469 
470  // Return a bucket size no smaller than n.
471  std::size_t
472  _M_next_bkt(std::size_t __n) const;
473 
474  // Return a bucket count appropriate for n elements
475  std::size_t
476  _M_bkt_for_elements(std::size_t __n) const
477  { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
478 
479  // __n_bkt is current bucket count, __n_elt is current element count,
480  // and __n_ins is number of elements to be inserted. Do we need to
481  // increase bucket count? If so, return make_pair(true, n), where n
482  // is the new bucket count. If not, return make_pair(false, 0).
484  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
485  std::size_t __n_ins) const;
486 
487  typedef std::size_t _State;
488 
489  _State
490  _M_state() const
491  { return _M_next_resize; }
492 
493  void
494  _M_reset() noexcept
495  { _M_next_resize = 0; }
496 
497  void
498  _M_reset(_State __state)
499  { _M_next_resize = __state; }
500 
501  enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
502 
503  static const std::size_t _S_growth_factor = 2;
504 
505  float _M_max_load_factor;
506  mutable std::size_t _M_next_resize;
507  };
508 
509  // Base classes for std::_Hashtable. We define these base classes
510  // because in some cases we want to do different things depending on
511  // the value of a policy class. In some cases the policy class
512  // affects which member functions and nested typedefs are defined;
513  // we handle that by specializing base class templates. Several of
514  // the base class templates need to access other members of class
515  // template _Hashtable, so we use a variant of the "Curiously
516  // Recurring Template Pattern" (CRTP) technique.
517 
518  /**
519  * Primary class template _Map_base.
520  *
521  * If the hashtable has a value type of the form pair<T1, T2> and a
522  * key extraction policy (_ExtractKey) that returns the first part
523  * of the pair, the hashtable gets a mapped_type typedef. If it
524  * satisfies those criteria and also has unique keys, then it also
525  * gets an operator[].
526  */
527  template<typename _Key, typename _Value, typename _Alloc,
528  typename _ExtractKey, typename _Equal,
529  typename _H1, typename _H2, typename _Hash,
530  typename _RehashPolicy, typename _Traits,
531  bool _Unique_keys = _Traits::__unique_keys::value>
532  struct _Map_base { };
533 
534  /// Partial specialization, __unique_keys set to false.
535  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
536  typename _H1, typename _H2, typename _Hash,
537  typename _RehashPolicy, typename _Traits>
538  struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
539  _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
540  {
541  using mapped_type = typename std::tuple_element<1, _Pair>::type;
542  };
543 
544  /// Partial specialization, __unique_keys set to true.
545  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
546  typename _H1, typename _H2, typename _Hash,
547  typename _RehashPolicy, typename _Traits>
548  struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
549  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
550  {
551  private:
552  using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
553  _Select1st,
554  _Equal, _H1, _H2, _Hash,
555  _Traits>;
556 
557  using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
558  _Select1st, _Equal,
559  _H1, _H2, _Hash, _RehashPolicy, _Traits>;
560 
561  using __hash_code = typename __hashtable_base::__hash_code;
562  using __node_type = typename __hashtable_base::__node_type;
563 
564  public:
565  using key_type = typename __hashtable_base::key_type;
566  using iterator = typename __hashtable_base::iterator;
567  using mapped_type = typename std::tuple_element<1, _Pair>::type;
568 
569  mapped_type&
570  operator[](const key_type& __k);
571 
572  mapped_type&
573  operator[](key_type&& __k);
574 
575  // _GLIBCXX_RESOLVE_LIB_DEFECTS
576  // DR 761. unordered_map needs an at() member function.
577  mapped_type&
578  at(const key_type& __k);
579 
580  const mapped_type&
581  at(const key_type& __k) const;
582  };
583 
584  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
585  typename _H1, typename _H2, typename _Hash,
586  typename _RehashPolicy, typename _Traits>
587  typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
588  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
589  ::mapped_type&
590  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
591  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
592  operator[](const key_type& __k)
593  {
594  __hashtable* __h = static_cast<__hashtable*>(this);
595  __hash_code __code = __h->_M_hash_code(__k);
596  std::size_t __n = __h->_M_bucket_index(__k, __code);
597  __node_type* __p = __h->_M_find_node(__n, __k, __code);
598 
599  if (!__p)
600  {
601  __p = __h->_M_allocate_node(std::piecewise_construct,
602  std::tuple<const key_type&>(__k),
603  std::tuple<>());
604  return __h->_M_insert_unique_node(__n, __code, __p)->second;
605  }
606 
607  return __p->_M_v().second;
608  }
609 
610  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
611  typename _H1, typename _H2, typename _Hash,
612  typename _RehashPolicy, typename _Traits>
613  typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
614  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
615  ::mapped_type&
616  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
617  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
618  operator[](key_type&& __k)
619  {
620  __hashtable* __h = static_cast<__hashtable*>(this);
621  __hash_code __code = __h->_M_hash_code(__k);
622  std::size_t __n = __h->_M_bucket_index(__k, __code);
623  __node_type* __p = __h->_M_find_node(__n, __k, __code);
624 
625  if (!__p)
626  {
627  __p = __h->_M_allocate_node(std::piecewise_construct,
628  std::forward_as_tuple(std::move(__k)),
629  std::tuple<>());
630  return __h->_M_insert_unique_node(__n, __code, __p)->second;
631  }
632 
633  return __p->_M_v().second;
634  }
635 
636  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
637  typename _H1, typename _H2, typename _Hash,
638  typename _RehashPolicy, typename _Traits>
639  typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
640  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
641  ::mapped_type&
642  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
643  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
644  at(const key_type& __k)
645  {
646  __hashtable* __h = static_cast<__hashtable*>(this);
647  __hash_code __code = __h->_M_hash_code(__k);
648  std::size_t __n = __h->_M_bucket_index(__k, __code);
649  __node_type* __p = __h->_M_find_node(__n, __k, __code);
650 
651  if (!__p)
652  __throw_out_of_range(__N("_Map_base::at"));
653  return __p->_M_v().second;
654  }
655 
656  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
657  typename _H1, typename _H2, typename _Hash,
658  typename _RehashPolicy, typename _Traits>
659  const typename _Map_base<_Key, _Pair, _Alloc, _Select1st,
660  _Equal, _H1, _H2, _Hash, _RehashPolicy,
661  _Traits, true>::mapped_type&
662  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
663  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
664  at(const key_type& __k) const
665  {
666  const __hashtable* __h = static_cast<const __hashtable*>(this);
667  __hash_code __code = __h->_M_hash_code(__k);
668  std::size_t __n = __h->_M_bucket_index(__k, __code);
669  __node_type* __p = __h->_M_find_node(__n, __k, __code);
670 
671  if (!__p)
672  __throw_out_of_range(__N("_Map_base::at"));
673  return __p->_M_v().second;
674  }
675 
676  /**
677  * Primary class template _Insert_base.
678  *
679  * insert member functions appropriate to all _Hashtables.
680  */
681  template<typename _Key, typename _Value, typename _Alloc,
682  typename _ExtractKey, typename _Equal,
683  typename _H1, typename _H2, typename _Hash,
684  typename _RehashPolicy, typename _Traits>
686  {
687  protected:
688  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
689  _Equal, _H1, _H2, _Hash,
690  _RehashPolicy, _Traits>;
691 
692  using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
693  _Equal, _H1, _H2, _Hash,
694  _Traits>;
695 
696  using value_type = typename __hashtable_base::value_type;
697  using iterator = typename __hashtable_base::iterator;
698  using const_iterator = typename __hashtable_base::const_iterator;
699  using size_type = typename __hashtable_base::size_type;
700 
701  using __unique_keys = typename __hashtable_base::__unique_keys;
702  using __ireturn_type = typename __hashtable_base::__ireturn_type;
704  using __node_alloc_type =
705  typename __alloctr_rebind<_Alloc, __node_type>::__type;
706  using __node_gen_type = _AllocNode<__node_alloc_type>;
707 
708  __hashtable&
709  _M_conjure_hashtable()
710  { return *(static_cast<__hashtable*>(this)); }
711 
712  template<typename _InputIterator, typename _NodeGetter>
713  void
714  _M_insert_range(_InputIterator __first, _InputIterator __last,
715  const _NodeGetter&);
716 
717  public:
718  __ireturn_type
719  insert(const value_type& __v)
720  {
721  __hashtable& __h = _M_conjure_hashtable();
722  __node_gen_type __node_gen(__h);
723  return __h._M_insert(__v, __node_gen, __unique_keys());
724  }
725 
726  iterator
727  insert(const_iterator __hint, const value_type& __v)
728  {
729  __hashtable& __h = _M_conjure_hashtable();
730  __node_gen_type __node_gen(__h);
731  return __h._M_insert(__hint, __v, __node_gen, __unique_keys());
732  }
733 
734  void
735  insert(initializer_list<value_type> __l)
736  { this->insert(__l.begin(), __l.end()); }
737 
738  template<typename _InputIterator>
739  void
740  insert(_InputIterator __first, _InputIterator __last)
741  {
742  __hashtable& __h = _M_conjure_hashtable();
743  __node_gen_type __node_gen(__h);
744  return _M_insert_range(__first, __last, __node_gen);
745  }
746  };
747 
748  template<typename _Key, typename _Value, typename _Alloc,
749  typename _ExtractKey, typename _Equal,
750  typename _H1, typename _H2, typename _Hash,
751  typename _RehashPolicy, typename _Traits>
752  template<typename _InputIterator, typename _NodeGetter>
753  void
754  _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
755  _RehashPolicy, _Traits>::
756  _M_insert_range(_InputIterator __first, _InputIterator __last,
757  const _NodeGetter& __node_gen)
758  {
759  using __rehash_type = typename __hashtable::__rehash_type;
760  using __rehash_state = typename __hashtable::__rehash_state;
761  using pair_type = std::pair<bool, std::size_t>;
762 
763  size_type __n_elt = __detail::__distance_fw(__first, __last);
764 
765  __hashtable& __h = _M_conjure_hashtable();
766  __rehash_type& __rehash = __h._M_rehash_policy;
767  const __rehash_state& __saved_state = __rehash._M_state();
768  pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
769  __h._M_element_count,
770  __n_elt);
771 
772  if (__do_rehash.first)
773  __h._M_rehash(__do_rehash.second, __saved_state);
774 
775  for (; __first != __last; ++__first)
776  __h._M_insert(*__first, __node_gen, __unique_keys());
777  }
778 
779  /**
780  * Primary class template _Insert.
781  *
782  * Select insert member functions appropriate to _Hashtable policy choices.
783  */
784  template<typename _Key, typename _Value, typename _Alloc,
785  typename _ExtractKey, typename _Equal,
786  typename _H1, typename _H2, typename _Hash,
787  typename _RehashPolicy, typename _Traits,
788  bool _Constant_iterators = _Traits::__constant_iterators::value,
789  bool _Unique_keys = _Traits::__unique_keys::value>
790  struct _Insert;
791 
792  /// Specialization.
793  template<typename _Key, typename _Value, typename _Alloc,
794  typename _ExtractKey, typename _Equal,
795  typename _H1, typename _H2, typename _Hash,
796  typename _RehashPolicy, typename _Traits>
797  struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
798  _RehashPolicy, _Traits, true, true>
799  : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
800  _H1, _H2, _Hash, _RehashPolicy, _Traits>
801  {
802  using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
803  _Equal, _H1, _H2, _Hash,
804  _RehashPolicy, _Traits>;
805  using value_type = typename __base_type::value_type;
806  using iterator = typename __base_type::iterator;
807  using const_iterator = typename __base_type::const_iterator;
808 
809  using __unique_keys = typename __base_type::__unique_keys;
810  using __hashtable = typename __base_type::__hashtable;
811  using __node_gen_type = typename __base_type::__node_gen_type;
812 
813  using __base_type::insert;
814 
816  insert(value_type&& __v)
817  {
818  __hashtable& __h = this->_M_conjure_hashtable();
819  __node_gen_type __node_gen(__h);
820  return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
821  }
822 
823  iterator
824  insert(const_iterator __hint, value_type&& __v)
825  {
826  __hashtable& __h = this->_M_conjure_hashtable();
827  __node_gen_type __node_gen(__h);
828  return __h._M_insert(__hint, std::move(__v), __node_gen,
829  __unique_keys());
830  }
831  };
832 
833  /// Specialization.
834  template<typename _Key, typename _Value, typename _Alloc,
835  typename _ExtractKey, typename _Equal,
836  typename _H1, typename _H2, typename _Hash,
837  typename _RehashPolicy, typename _Traits>
838  struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
839  _RehashPolicy, _Traits, true, false>
840  : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
841  _H1, _H2, _Hash, _RehashPolicy, _Traits>
842  {
843  using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
844  _Equal, _H1, _H2, _Hash,
845  _RehashPolicy, _Traits>;
846  using value_type = typename __base_type::value_type;
847  using iterator = typename __base_type::iterator;
848  using const_iterator = typename __base_type::const_iterator;
849 
850  using __unique_keys = typename __base_type::__unique_keys;
851  using __hashtable = typename __base_type::__hashtable;
852  using __node_gen_type = typename __base_type::__node_gen_type;
853 
854  using __base_type::insert;
855 
856  iterator
857  insert(value_type&& __v)
858  {
859  __hashtable& __h = this->_M_conjure_hashtable();
860  __node_gen_type __node_gen(__h);
861  return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
862  }
863 
864  iterator
865  insert(const_iterator __hint, value_type&& __v)
866  {
867  __hashtable& __h = this->_M_conjure_hashtable();
868  __node_gen_type __node_gen(__h);
869  return __h._M_insert(__hint, std::move(__v), __node_gen,
870  __unique_keys());
871  }
872  };
873 
874  /// Specialization.
875  template<typename _Key, typename _Value, typename _Alloc,
876  typename _ExtractKey, typename _Equal,
877  typename _H1, typename _H2, typename _Hash,
878  typename _RehashPolicy, typename _Traits, bool _Unique_keys>
879  struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
880  _RehashPolicy, _Traits, false, _Unique_keys>
881  : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
882  _H1, _H2, _Hash, _RehashPolicy, _Traits>
883  {
884  using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
885  _Equal, _H1, _H2, _Hash,
886  _RehashPolicy, _Traits>;
887  using value_type = typename __base_type::value_type;
888  using iterator = typename __base_type::iterator;
889  using const_iterator = typename __base_type::const_iterator;
890 
891  using __unique_keys = typename __base_type::__unique_keys;
892  using __hashtable = typename __base_type::__hashtable;
893  using __ireturn_type = typename __base_type::__ireturn_type;
894 
895  using __base_type::insert;
896 
897  template<typename _Pair>
898  using __is_cons = std::is_constructible<value_type, _Pair&&>;
899 
900  template<typename _Pair>
901  using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
902 
903  template<typename _Pair>
904  using _IFconsp = typename _IFcons<_Pair>::type;
905 
906  template<typename _Pair, typename = _IFconsp<_Pair>>
907  __ireturn_type
908  insert(_Pair&& __v)
909  {
910  __hashtable& __h = this->_M_conjure_hashtable();
911  return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
912  }
913 
914  template<typename _Pair, typename = _IFconsp<_Pair>>
915  iterator
916  insert(const_iterator __hint, _Pair&& __v)
917  {
918  __hashtable& __h = this->_M_conjure_hashtable();
919  return __h._M_emplace(__hint, __unique_keys(),
920  std::forward<_Pair>(__v));
921  }
922  };
923 
924  /**
925  * Primary class template _Rehash_base.
926  *
927  * Give hashtable the max_load_factor functions and reserve iff the
928  * rehash policy is _Prime_rehash_policy.
929  */
930  template<typename _Key, typename _Value, typename _Alloc,
931  typename _ExtractKey, typename _Equal,
932  typename _H1, typename _H2, typename _Hash,
933  typename _RehashPolicy, typename _Traits>
934  struct _Rehash_base;
935 
936  /// Specialization.
937  template<typename _Key, typename _Value, typename _Alloc,
938  typename _ExtractKey, typename _Equal,
939  typename _H1, typename _H2, typename _Hash, typename _Traits>
940  struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
941  _H1, _H2, _Hash, _Prime_rehash_policy, _Traits>
942  {
943  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
944  _Equal, _H1, _H2, _Hash,
945  _Prime_rehash_policy, _Traits>;
946 
947  float
948  max_load_factor() const noexcept
949  {
950  const __hashtable* __this = static_cast<const __hashtable*>(this);
951  return __this->__rehash_policy().max_load_factor();
952  }
953 
954  void
955  max_load_factor(float __z)
956  {
957  __hashtable* __this = static_cast<__hashtable*>(this);
958  __this->__rehash_policy(_Prime_rehash_policy(__z));
959  }
960 
961  void
962  reserve(std::size_t __n)
963  {
964  __hashtable* __this = static_cast<__hashtable*>(this);
965  __this->rehash(__builtin_ceil(__n / max_load_factor()));
966  }
967  };
968 
969  /**
970  * Primary class template _Hashtable_ebo_helper.
971  *
972  * Helper class using EBO when it is not forbidden (the type is not
973  * final) and when it is worth it (the type is empty.)
974  */
975  template<int _Nm, typename _Tp,
976  bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
978 
979  /// Specialization using EBO.
980  template<int _Nm, typename _Tp>
981  struct _Hashtable_ebo_helper<_Nm, _Tp, true>
982  : private _Tp
983  {
984  _Hashtable_ebo_helper() = default;
985 
986  template<typename _OtherTp>
987  _Hashtable_ebo_helper(_OtherTp&& __tp)
988  : _Tp(std::forward<_OtherTp>(__tp))
989  { }
990 
991  static const _Tp&
992  _S_cget(const _Hashtable_ebo_helper& __eboh)
993  { return static_cast<const _Tp&>(__eboh); }
994 
995  static _Tp&
996  _S_get(_Hashtable_ebo_helper& __eboh)
997  { return static_cast<_Tp&>(__eboh); }
998  };
999 
1000  /// Specialization not using EBO.
1001  template<int _Nm, typename _Tp>
1002  struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1003  {
1004  _Hashtable_ebo_helper() = default;
1005 
1006  template<typename _OtherTp>
1007  _Hashtable_ebo_helper(_OtherTp&& __tp)
1008  : _M_tp(std::forward<_OtherTp>(__tp))
1009  { }
1010 
1011  static const _Tp&
1012  _S_cget(const _Hashtable_ebo_helper& __eboh)
1013  { return __eboh._M_tp; }
1014 
1015  static _Tp&
1016  _S_get(_Hashtable_ebo_helper& __eboh)
1017  { return __eboh._M_tp; }
1018 
1019  private:
1020  _Tp _M_tp;
1021  };
1022 
1023  /**
1024  * Primary class template _Local_iterator_base.
1025  *
1026  * Base class for local iterators, used to iterate within a bucket
1027  * but not between buckets.
1028  */
1029  template<typename _Key, typename _Value, typename _ExtractKey,
1030  typename _H1, typename _H2, typename _Hash,
1031  bool __cache_hash_code>
1033 
1034  /**
1035  * Primary class template _Hash_code_base.
1036  *
1037  * Encapsulates two policy issues that aren't quite orthogonal.
1038  * (1) the difference between using a ranged hash function and using
1039  * the combination of a hash function and a range-hashing function.
1040  * In the former case we don't have such things as hash codes, so
1041  * we have a dummy type as placeholder.
1042  * (2) Whether or not we cache hash codes. Caching hash codes is
1043  * meaningless if we have a ranged hash function.
1044  *
1045  * We also put the key extraction objects here, for convenience.
1046  * Each specialization derives from one or more of the template
1047  * parameters to benefit from Ebo. This is important as this type
1048  * is inherited in some cases by the _Local_iterator_base type used
1049  * to implement local_iterator and const_local_iterator. As with
1050  * any iterator type we prefer to make it as small as possible.
1051  *
1052  * Primary template is unused except as a hook for specializations.
1053  */
1054  template<typename _Key, typename _Value, typename _ExtractKey,
1055  typename _H1, typename _H2, typename _Hash,
1056  bool __cache_hash_code>
1058 
1059  /// Specialization: ranged hash function, no caching hash codes. H1
1060  /// and H2 are provided but ignored. We define a dummy hash code type.
1061  template<typename _Key, typename _Value, typename _ExtractKey,
1062  typename _H1, typename _H2, typename _Hash>
1063  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
1064  : private _Hashtable_ebo_helper<0, _ExtractKey>,
1065  private _Hashtable_ebo_helper<1, _Hash>
1066  {
1067  private:
1070 
1071  protected:
1072  typedef void* __hash_code;
1074 
1075  // We need the default constructor for the local iterators.
1076  _Hash_code_base() = default;
1077 
1078  _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
1079  const _Hash& __h)
1080  : __ebo_extract_key(__ex), __ebo_hash(__h) { }
1081 
1082  __hash_code
1083  _M_hash_code(const _Key& __key) const
1084  { return 0; }
1085 
1086  std::size_t
1087  _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const
1088  { return _M_ranged_hash()(__k, __n); }
1089 
1090  std::size_t
1091  _M_bucket_index(const __node_type* __p, std::size_t __n) const
1092  noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(),
1093  (std::size_t)0)) )
1094  { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); }
1095 
1096  void
1097  _M_store_code(__node_type*, __hash_code) const
1098  { }
1099 
1100  void
1101  _M_copy_code(__node_type*, const __node_type*) const
1102  { }
1103 
1104  void
1105  _M_swap(_Hash_code_base& __x)
1106  {
1107  std::swap(_M_extract(), __x._M_extract());
1108  std::swap(_M_ranged_hash(), __x._M_ranged_hash());
1109  }
1110 
1111  const _ExtractKey&
1112  _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1113 
1114  _ExtractKey&
1115  _M_extract() { return __ebo_extract_key::_S_get(*this); }
1116 
1117  const _Hash&
1118  _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); }
1119 
1120  _Hash&
1121  _M_ranged_hash() { return __ebo_hash::_S_get(*this); }
1122  };
1123 
1124  // No specialization for ranged hash function while caching hash codes.
1125  // That combination is meaningless, and trying to do it is an error.
1126 
1127  /// Specialization: ranged hash function, cache hash codes. This
1128  /// combination is meaningless, so we provide only a declaration
1129  /// and no definition.
1130  template<typename _Key, typename _Value, typename _ExtractKey,
1131  typename _H1, typename _H2, typename _Hash>
1132  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
1133 
1134  /// Specialization: hash function and range-hashing function, no
1135  /// caching of hash codes.
1136  /// Provides typedef and accessor required by C++ 11.
1137  template<typename _Key, typename _Value, typename _ExtractKey,
1138  typename _H1, typename _H2>
1139  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1140  _Default_ranged_hash, false>
1141  : private _Hashtable_ebo_helper<0, _ExtractKey>,
1142  private _Hashtable_ebo_helper<1, _H1>,
1143  private _Hashtable_ebo_helper<2, _H2>
1144  {
1145  private:
1149 
1150  // Gives the local iterator implementation access to _M_bucket_index().
1151  friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1152  _Default_ranged_hash, false>;
1153 
1154  public:
1155  typedef _H1 hasher;
1156 
1157  hasher
1158  hash_function() const
1159  { return _M_h1(); }
1160 
1161  protected:
1162  typedef std::size_t __hash_code;
1164 
1165  // We need the default constructor for the local iterators.
1166  _Hash_code_base() = default;
1167 
1168  _Hash_code_base(const _ExtractKey& __ex,
1169  const _H1& __h1, const _H2& __h2,
1170  const _Default_ranged_hash&)
1171  : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1172 
1173  __hash_code
1174  _M_hash_code(const _Key& __k) const
1175  { return _M_h1()(__k); }
1176 
1177  std::size_t
1178  _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const
1179  { return _M_h2()(__c, __n); }
1180 
1181  std::size_t
1182  _M_bucket_index(const __node_type* __p, std::size_t __n) const
1183  noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>()))
1184  && noexcept(declval<const _H2&>()((__hash_code)0,
1185  (std::size_t)0)) )
1186  { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); }
1187 
1188  void
1189  _M_store_code(__node_type*, __hash_code) const
1190  { }
1191 
1192  void
1193  _M_copy_code(__node_type*, const __node_type*) const
1194  { }
1195 
1196  void
1197  _M_swap(_Hash_code_base& __x)
1198  {
1199  std::swap(_M_extract(), __x._M_extract());
1200  std::swap(_M_h1(), __x._M_h1());
1201  std::swap(_M_h2(), __x._M_h2());
1202  }
1203 
1204  const _ExtractKey&
1205  _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1206 
1207  _ExtractKey&
1208  _M_extract() { return __ebo_extract_key::_S_get(*this); }
1209 
1210  const _H1&
1211  _M_h1() const { return __ebo_h1::_S_cget(*this); }
1212 
1213  _H1&
1214  _M_h1() { return __ebo_h1::_S_get(*this); }
1215 
1216  const _H2&
1217  _M_h2() const { return __ebo_h2::_S_cget(*this); }
1218 
1219  _H2&
1220  _M_h2() { return __ebo_h2::_S_get(*this); }
1221  };
1222 
1223  /// Specialization: hash function and range-hashing function,
1224  /// caching hash codes. H is provided but ignored. Provides
1225  /// typedef and accessor required by C++ 11.
1226  template<typename _Key, typename _Value, typename _ExtractKey,
1227  typename _H1, typename _H2>
1228  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1229  _Default_ranged_hash, true>
1230  : private _Hashtable_ebo_helper<0, _ExtractKey>,
1231  private _Hashtable_ebo_helper<1, _H1>,
1232  private _Hashtable_ebo_helper<2, _H2>
1233  {
1234  private:
1235  // Gives the local iterator implementation access to _M_h2().
1236  friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1237  _Default_ranged_hash, true>;
1238 
1242 
1243  public:
1244  typedef _H1 hasher;
1245 
1246  hasher
1247  hash_function() const
1248  { return _M_h1(); }
1249 
1250  protected:
1251  typedef std::size_t __hash_code;
1253 
1254  _Hash_code_base(const _ExtractKey& __ex,
1255  const _H1& __h1, const _H2& __h2,
1256  const _Default_ranged_hash&)
1257  : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1258 
1259  __hash_code
1260  _M_hash_code(const _Key& __k) const
1261  { return _M_h1()(__k); }
1262 
1263  std::size_t
1264  _M_bucket_index(const _Key&, __hash_code __c,
1265  std::size_t __n) const
1266  { return _M_h2()(__c, __n); }
1267 
1268  std::size_t
1269  _M_bucket_index(const __node_type* __p, std::size_t __n) const
1270  noexcept( noexcept(declval<const _H2&>()((__hash_code)0,
1271  (std::size_t)0)) )
1272  { return _M_h2()(__p->_M_hash_code, __n); }
1273 
1274  void
1275  _M_store_code(__node_type* __n, __hash_code __c) const
1276  { __n->_M_hash_code = __c; }
1277 
1278  void
1279  _M_copy_code(__node_type* __to, const __node_type* __from) const
1280  { __to->_M_hash_code = __from->_M_hash_code; }
1281 
1282  void
1283  _M_swap(_Hash_code_base& __x)
1284  {
1285  std::swap(_M_extract(), __x._M_extract());
1286  std::swap(_M_h1(), __x._M_h1());
1287  std::swap(_M_h2(), __x._M_h2());
1288  }
1289 
1290  const _ExtractKey&
1291  _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1292 
1293  _ExtractKey&
1294  _M_extract() { return __ebo_extract_key::_S_get(*this); }
1295 
1296  const _H1&
1297  _M_h1() const { return __ebo_h1::_S_cget(*this); }
1298 
1299  _H1&
1300  _M_h1() { return __ebo_h1::_S_get(*this); }
1301 
1302  const _H2&
1303  _M_h2() const { return __ebo_h2::_S_cget(*this); }
1304 
1305  _H2&
1306  _M_h2() { return __ebo_h2::_S_get(*this); }
1307  };
1308 
1309  /**
1310  * Primary class template _Equal_helper.
1311  *
1312  */
1313  template <typename _Key, typename _Value, typename _ExtractKey,
1314  typename _Equal, typename _HashCodeType,
1315  bool __cache_hash_code>
1317 
1318  /// Specialization.
1319  template<typename _Key, typename _Value, typename _ExtractKey,
1320  typename _Equal, typename _HashCodeType>
1321  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
1322  {
1323  static bool
1324  _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1325  const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n)
1326  { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); }
1327  };
1328 
1329  /// Specialization.
1330  template<typename _Key, typename _Value, typename _ExtractKey,
1331  typename _Equal, typename _HashCodeType>
1332  struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
1333  {
1334  static bool
1335  _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1336  const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n)
1337  { return __eq(__k, __extract(__n->_M_v())); }
1338  };
1339 
1340 
1341  /// Partial specialization used when nodes contain a cached hash code.
1342  template<typename _Key, typename _Value, typename _ExtractKey,
1343  typename _H1, typename _H2, typename _Hash>
1344  struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1345  _H1, _H2, _Hash, true>
1346  : private _Hashtable_ebo_helper<0, _H2>
1347  {
1348  protected:
1350  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1351  _H1, _H2, _Hash, true>;
1352 
1353  _Local_iterator_base() = default;
1356  std::size_t __bkt, std::size_t __bkt_count)
1357  : __base_type(__base._M_h2()),
1358  _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1359 
1360  void
1361  _M_incr()
1362  {
1363  _M_cur = _M_cur->_M_next();
1364  if (_M_cur)
1365  {
1366  std::size_t __bkt
1367  = __base_type::_S_get(*this)(_M_cur->_M_hash_code,
1368  _M_bucket_count);
1369  if (__bkt != _M_bucket)
1370  _M_cur = nullptr;
1371  }
1372  }
1373 
1374  _Hash_node<_Value, true>* _M_cur;
1375  std::size_t _M_bucket;
1376  std::size_t _M_bucket_count;
1377 
1378  public:
1379  const void*
1380  _M_curr() const { return _M_cur; } // for equality ops
1381 
1382  std::size_t
1383  _M_get_bucket() const { return _M_bucket; } // for debug mode
1384  };
1385 
1386  // Uninitialized storage for a _Hash_code_base.
1387  // This type is DefaultConstructible and Assignable even if the
1388  // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1389  // can be DefaultConstructible and Assignable.
1390  template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1391  struct _Hash_code_storage
1392  {
1393  __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1394 
1395  _Tp*
1396  _M_h() { return _M_storage._M_ptr(); }
1397 
1398  const _Tp*
1399  _M_h() const { return _M_storage._M_ptr(); }
1400  };
1401 
1402  // Empty partial specialization for empty _Hash_code_base types.
1403  template<typename _Tp>
1404  struct _Hash_code_storage<_Tp, true>
1405  {
1406  static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1407 
1408  // As _Tp is an empty type there will be no bytes written/read through
1409  // the cast pointer, so no strict-aliasing violation.
1410  _Tp*
1411  _M_h() { return reinterpret_cast<_Tp*>(this); }
1412 
1413  const _Tp*
1414  _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1415  };
1416 
1417  template<typename _Key, typename _Value, typename _ExtractKey,
1418  typename _H1, typename _H2, typename _Hash>
1419  using __hash_code_for_local_iter
1420  = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1421  _H1, _H2, _Hash, false>>;
1422 
1423  // Partial specialization used when hash codes are not cached
1424  template<typename _Key, typename _Value, typename _ExtractKey,
1425  typename _H1, typename _H2, typename _Hash>
1426  struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1427  _H1, _H2, _Hash, false>
1428  : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash>
1429  {
1430  protected:
1431  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1432  _H1, _H2, _Hash, false>;
1433 
1434  _Local_iterator_base() : _M_bucket_count(-1) { }
1435 
1436  _Local_iterator_base(const __hash_code_base& __base,
1437  _Hash_node<_Value, false>* __p,
1438  std::size_t __bkt, std::size_t __bkt_count)
1439  : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1440  { _M_init(__base); }
1441 
1442  ~_Local_iterator_base()
1443  {
1444  if (_M_bucket_count != -1)
1445  _M_destroy();
1446  }
1447 
1448  _Local_iterator_base(const _Local_iterator_base& __iter)
1449  : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket),
1450  _M_bucket_count(__iter._M_bucket_count)
1451  {
1452  if (_M_bucket_count != -1)
1453  _M_init(*__iter._M_h());
1454  }
1455 
1456  _Local_iterator_base&
1457  operator=(const _Local_iterator_base& __iter)
1458  {
1459  if (_M_bucket_count != -1)
1460  _M_destroy();
1461  _M_cur = __iter._M_cur;
1462  _M_bucket = __iter._M_bucket;
1463  _M_bucket_count = __iter._M_bucket_count;
1464  if (_M_bucket_count != -1)
1465  _M_init(*__iter._M_h());
1466  return *this;
1467  }
1468 
1469  void
1470  _M_incr()
1471  {
1472  _M_cur = _M_cur->_M_next();
1473  if (_M_cur)
1474  {
1475  std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur,
1476  _M_bucket_count);
1477  if (__bkt != _M_bucket)
1478  _M_cur = nullptr;
1479  }
1480  }
1481 
1482  _Hash_node<_Value, false>* _M_cur;
1483  std::size_t _M_bucket;
1484  std::size_t _M_bucket_count;
1485 
1486  void
1487  _M_init(const __hash_code_base& __base)
1488  { ::new(this->_M_h()) __hash_code_base(__base); }
1489 
1490  void
1491  _M_destroy() { this->_M_h()->~__hash_code_base(); }
1492 
1493  public:
1494  const void*
1495  _M_curr() const { return _M_cur; } // for equality ops and debug mode
1496 
1497  std::size_t
1498  _M_get_bucket() const { return _M_bucket; } // for debug mode
1499  };
1500 
1501  template<typename _Key, typename _Value, typename _ExtractKey,
1502  typename _H1, typename _H2, typename _Hash, bool __cache>
1503  inline bool
1504  operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1505  _H1, _H2, _Hash, __cache>& __x,
1506  const _Local_iterator_base<_Key, _Value, _ExtractKey,
1507  _H1, _H2, _Hash, __cache>& __y)
1508  { return __x._M_curr() == __y._M_curr(); }
1509 
1510  template<typename _Key, typename _Value, typename _ExtractKey,
1511  typename _H1, typename _H2, typename _Hash, bool __cache>
1512  inline bool
1513  operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1514  _H1, _H2, _Hash, __cache>& __x,
1515  const _Local_iterator_base<_Key, _Value, _ExtractKey,
1516  _H1, _H2, _Hash, __cache>& __y)
1517  { return __x._M_curr() != __y._M_curr(); }
1518 
1519  /// local iterators
1520  template<typename _Key, typename _Value, typename _ExtractKey,
1521  typename _H1, typename _H2, typename _Hash,
1522  bool __constant_iterators, bool __cache>
1524  : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1525  _H1, _H2, _Hash, __cache>
1526  {
1527  private:
1528  using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1529  _H1, _H2, _Hash, __cache>;
1530  using __hash_code_base = typename __base_type::__hash_code_base;
1531  public:
1532  typedef _Value value_type;
1533  typedef typename std::conditional<__constant_iterators,
1534  const _Value*, _Value*>::type
1535  pointer;
1536  typedef typename std::conditional<__constant_iterators,
1537  const _Value&, _Value&>::type
1538  reference;
1539  typedef std::ptrdiff_t difference_type;
1541 
1542  _Local_iterator() = default;
1543 
1544  _Local_iterator(const __hash_code_base& __base,
1546  std::size_t __bkt, std::size_t __bkt_count)
1547  : __base_type(__base, __p, __bkt, __bkt_count)
1548  { }
1549 
1550  reference
1551  operator*() const
1552  { return this->_M_cur->_M_v(); }
1553 
1554  pointer
1555  operator->() const
1556  { return this->_M_cur->_M_valptr(); }
1557 
1559  operator++()
1560  {
1561  this->_M_incr();
1562  return *this;
1563  }
1564 
1566  operator++(int)
1567  {
1568  _Local_iterator __tmp(*this);
1569  this->_M_incr();
1570  return __tmp;
1571  }
1572  };
1573 
1574  /// local const_iterators
1575  template<typename _Key, typename _Value, typename _ExtractKey,
1576  typename _H1, typename _H2, typename _Hash,
1577  bool __constant_iterators, bool __cache>
1579  : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1580  _H1, _H2, _Hash, __cache>
1581  {
1582  private:
1583  using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1584  _H1, _H2, _Hash, __cache>;
1585  using __hash_code_base = typename __base_type::__hash_code_base;
1586 
1587  public:
1588  typedef _Value value_type;
1589  typedef const _Value* pointer;
1590  typedef const _Value& reference;
1591  typedef std::ptrdiff_t difference_type;
1593 
1594  _Local_const_iterator() = default;
1595 
1596  _Local_const_iterator(const __hash_code_base& __base,
1598  std::size_t __bkt, std::size_t __bkt_count)
1599  : __base_type(__base, __p, __bkt, __bkt_count)
1600  { }
1601 
1602  _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1603  _H1, _H2, _Hash,
1604  __constant_iterators,
1605  __cache>& __x)
1606  : __base_type(__x)
1607  { }
1608 
1609  reference
1610  operator*() const
1611  { return this->_M_cur->_M_v(); }
1612 
1613  pointer
1614  operator->() const
1615  { return this->_M_cur->_M_valptr(); }
1616 
1618  operator++()
1619  {
1620  this->_M_incr();
1621  return *this;
1622  }
1623 
1625  operator++(int)
1626  {
1627  _Local_const_iterator __tmp(*this);
1628  this->_M_incr();
1629  return __tmp;
1630  }
1631  };
1632 
1633  /**
1634  * Primary class template _Hashtable_base.
1635  *
1636  * Helper class adding management of _Equal functor to
1637  * _Hash_code_base type.
1638  *
1639  * Base class templates are:
1640  * - __detail::_Hash_code_base
1641  * - __detail::_Hashtable_ebo_helper
1642  */
1643  template<typename _Key, typename _Value,
1644  typename _ExtractKey, typename _Equal,
1645  typename _H1, typename _H2, typename _Hash, typename _Traits>
1646  struct _Hashtable_base
1647  : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1648  _Traits::__hash_cached::value>,
1649  private _Hashtable_ebo_helper<0, _Equal>
1650  {
1651  public:
1652  typedef _Key key_type;
1653  typedef _Value value_type;
1654  typedef _Equal key_equal;
1655  typedef std::size_t size_type;
1656  typedef std::ptrdiff_t difference_type;
1657 
1658  using __traits_type = _Traits;
1659  using __hash_cached = typename __traits_type::__hash_cached;
1660  using __constant_iterators = typename __traits_type::__constant_iterators;
1661  using __unique_keys = typename __traits_type::__unique_keys;
1662 
1663  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1664  _H1, _H2, _Hash,
1665  __hash_cached::value>;
1666 
1667  using __hash_code = typename __hash_code_base::__hash_code;
1668  using __node_type = typename __hash_code_base::__node_type;
1669 
1670  using iterator = __detail::_Node_iterator<value_type,
1671  __constant_iterators::value,
1672  __hash_cached::value>;
1673 
1674  using const_iterator = __detail::_Node_const_iterator<value_type,
1675  __constant_iterators::value,
1676  __hash_cached::value>;
1677 
1678  using local_iterator = __detail::_Local_iterator<key_type, value_type,
1679  _ExtractKey, _H1, _H2, _Hash,
1680  __constant_iterators::value,
1681  __hash_cached::value>;
1682 
1683  using const_local_iterator = __detail::_Local_const_iterator<key_type,
1684  value_type,
1685  _ExtractKey, _H1, _H2, _Hash,
1686  __constant_iterators::value,
1687  __hash_cached::value>;
1688 
1689  using __ireturn_type = typename std::conditional<__unique_keys::value,
1691  iterator>::type;
1692  private:
1693  using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1694  using _EqualHelper = _Equal_helper<_Key, _Value, _ExtractKey, _Equal,
1695  __hash_code, __hash_cached::value>;
1696 
1697  protected:
1698  _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
1699  const _Hash& __hash, const _Equal& __eq)
1700  : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
1701  { }
1702 
1703  bool
1704  _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
1705  {
1706  return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
1707  __k, __c, __n);
1708  }
1709 
1710  void
1711  _M_swap(_Hashtable_base& __x)
1712  {
1713  __hash_code_base::_M_swap(__x);
1714  std::swap(_M_eq(), __x._M_eq());
1715  }
1716 
1717  const _Equal&
1718  _M_eq() const { return _EqualEBO::_S_cget(*this); }
1719 
1720  _Equal&
1721  _M_eq() { return _EqualEBO::_S_get(*this); }
1722  };
1723 
1724  /**
1725  * struct _Equality_base.
1726  *
1727  * Common types and functions for class _Equality.
1728  */
1730  {
1731  protected:
1732  template<typename _Uiterator>
1733  static bool
1734  _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
1735  };
1736 
1737  // See std::is_permutation in N3068.
1738  template<typename _Uiterator>
1739  bool
1740  _Equality_base::
1741  _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
1742  _Uiterator __first2)
1743  {
1744  for (; __first1 != __last1; ++__first1, ++__first2)
1745  if (!(*__first1 == *__first2))
1746  break;
1747 
1748  if (__first1 == __last1)
1749  return true;
1750 
1751  _Uiterator __last2 = __first2;
1752  std::advance(__last2, std::distance(__first1, __last1));
1753 
1754  for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
1755  {
1756  _Uiterator __tmp = __first1;
1757  while (__tmp != __it1 && !bool(*__tmp == *__it1))
1758  ++__tmp;
1759 
1760  // We've seen this one before.
1761  if (__tmp != __it1)
1762  continue;
1763 
1764  std::ptrdiff_t __n2 = 0;
1765  for (__tmp = __first2; __tmp != __last2; ++__tmp)
1766  if (*__tmp == *__it1)
1767  ++__n2;
1768 
1769  if (!__n2)
1770  return false;
1771 
1772  std::ptrdiff_t __n1 = 0;
1773  for (__tmp = __it1; __tmp != __last1; ++__tmp)
1774  if (*__tmp == *__it1)
1775  ++__n1;
1776 
1777  if (__n1 != __n2)
1778  return false;
1779  }
1780  return true;
1781  }
1782 
1783  /**
1784  * Primary class template _Equality.
1785  *
1786  * This is for implementing equality comparison for unordered
1787  * containers, per N3068, by John Lakos and Pablo Halpern.
1788  * Algorithmically, we follow closely the reference implementations
1789  * therein.
1790  */
1791  template<typename _Key, typename _Value, typename _Alloc,
1792  typename _ExtractKey, typename _Equal,
1793  typename _H1, typename _H2, typename _Hash,
1794  typename _RehashPolicy, typename _Traits,
1795  bool _Unique_keys = _Traits::__unique_keys::value>
1796  struct _Equality;
1797 
1798  /// Specialization.
1799  template<typename _Key, typename _Value, typename _Alloc,
1800  typename _ExtractKey, typename _Equal,
1801  typename _H1, typename _H2, typename _Hash,
1802  typename _RehashPolicy, typename _Traits>
1803  struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1804  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
1805  {
1806  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1807  _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1808 
1809  bool
1810  _M_equal(const __hashtable&) const;
1811  };
1812 
1813  template<typename _Key, typename _Value, typename _Alloc,
1814  typename _ExtractKey, typename _Equal,
1815  typename _H1, typename _H2, typename _Hash,
1816  typename _RehashPolicy, typename _Traits>
1817  bool
1818  _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1819  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
1820  _M_equal(const __hashtable& __other) const
1821  {
1822  const __hashtable* __this = static_cast<const __hashtable*>(this);
1823 
1824  if (__this->size() != __other.size())
1825  return false;
1826 
1827  for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1828  {
1829  const auto __ity = __other.find(_ExtractKey()(*__itx));
1830  if (__ity == __other.end() || !bool(*__ity == *__itx))
1831  return false;
1832  }
1833  return true;
1834  }
1835 
1836  /// Specialization.
1837  template<typename _Key, typename _Value, typename _Alloc,
1838  typename _ExtractKey, typename _Equal,
1839  typename _H1, typename _H2, typename _Hash,
1840  typename _RehashPolicy, typename _Traits>
1841  struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1842  _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
1843  : public _Equality_base
1844  {
1845  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1846  _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1847 
1848  bool
1849  _M_equal(const __hashtable&) const;
1850  };
1851 
1852  template<typename _Key, typename _Value, typename _Alloc,
1853  typename _ExtractKey, typename _Equal,
1854  typename _H1, typename _H2, typename _Hash,
1855  typename _RehashPolicy, typename _Traits>
1856  bool
1857  _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1858  _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
1859  _M_equal(const __hashtable& __other) const
1860  {
1861  const __hashtable* __this = static_cast<const __hashtable*>(this);
1862 
1863  if (__this->size() != __other.size())
1864  return false;
1865 
1866  for (auto __itx = __this->begin(); __itx != __this->end();)
1867  {
1868  const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
1869  const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
1870 
1871  if (std::distance(__xrange.first, __xrange.second)
1872  != std::distance(__yrange.first, __yrange.second))
1873  return false;
1874 
1875  if (!_S_is_permutation(__xrange.first, __xrange.second,
1876  __yrange.first))
1877  return false;
1878 
1879  __itx = __xrange.second;
1880  }
1881  return true;
1882  }
1883 
1884  /**
1885  * This type deals with all allocation and keeps an allocator instance through
1886  * inheritance to benefit from EBO when possible.
1887  */
1888  template<typename _NodeAlloc>
1889  struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
1890  {
1891  private:
1892  using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
1893  public:
1894  using __node_type = typename _NodeAlloc::value_type;
1895  using __node_alloc_type = _NodeAlloc;
1896  // Use __gnu_cxx to benefit from _S_always_equal and al.
1897  using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
1898 
1899  using __value_type = typename __node_type::value_type;
1900  using __value_alloc_type =
1901  typename __alloctr_rebind<__node_alloc_type, __value_type>::__type;
1902  using __value_alloc_traits = std::allocator_traits<__value_alloc_type>;
1903 
1904  using __node_base = __detail::_Hash_node_base;
1905  using __bucket_type = __node_base*;
1906  using __bucket_alloc_type =
1907  typename __alloctr_rebind<__node_alloc_type, __bucket_type>::__type;
1908  using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>;
1909 
1910  _Hashtable_alloc(const _Hashtable_alloc&) = default;
1911  _Hashtable_alloc(_Hashtable_alloc&&) = default;
1912 
1913  template<typename _Alloc>
1914  _Hashtable_alloc(_Alloc&& __a)
1915  : __ebo_node_alloc(std::forward<_Alloc>(__a))
1916  { }
1917 
1918  __node_alloc_type&
1919  _M_node_allocator()
1920  { return __ebo_node_alloc::_S_get(*this); }
1921 
1922  const __node_alloc_type&
1923  _M_node_allocator() const
1924  { return __ebo_node_alloc::_S_cget(*this); }
1925 
1926  template<typename... _Args>
1927  __node_type*
1928  _M_allocate_node(_Args&&... __args);
1929 
1930  void
1931  _M_deallocate_node(__node_type* __n);
1932 
1933  // Deallocate the linked list of nodes pointed to by __n
1934  void
1935  _M_deallocate_nodes(__node_type* __n);
1936 
1937  __bucket_type*
1938  _M_allocate_buckets(std::size_t __n);
1939 
1940  void
1941  _M_deallocate_buckets(__bucket_type*, std::size_t __n);
1942  };
1943 
1944  // Definitions of class template _Hashtable_alloc's out-of-line member
1945  // functions.
1946  template<typename _NodeAlloc>
1947  template<typename... _Args>
1948  typename _Hashtable_alloc<_NodeAlloc>::__node_type*
1949  _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
1950  {
1951  auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
1952  __node_type* __n = std::__addressof(*__nptr);
1953  __try
1954  {
1955  __value_alloc_type __a(_M_node_allocator());
1956  ::new ((void*)__n) __node_type;
1957  __value_alloc_traits::construct(__a, __n->_M_valptr(),
1958  std::forward<_Args>(__args)...);
1959  return __n;
1960  }
1961  __catch(...)
1962  {
1963  __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
1964  __throw_exception_again;
1965  }
1966  }
1967 
1968  template<typename _NodeAlloc>
1969  void
1970  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n)
1971  {
1972  typedef typename __node_alloc_traits::pointer _Ptr;
1973  auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
1974  __value_alloc_type __a(_M_node_allocator());
1975  __value_alloc_traits::destroy(__a, __n->_M_valptr());
1976  __n->~__node_type();
1977  __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
1978  }
1979 
1980  template<typename _NodeAlloc>
1981  void
1982  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n)
1983  {
1984  while (__n)
1985  {
1986  __node_type* __tmp = __n;
1987  __n = __n->_M_next();
1988  _M_deallocate_node(__tmp);
1989  }
1990  }
1991 
1992  template<typename _NodeAlloc>
1993  typename _Hashtable_alloc<_NodeAlloc>::__bucket_type*
1994  _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __n)
1995  {
1996  __bucket_alloc_type __alloc(_M_node_allocator());
1997 
1998  auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n);
1999  __bucket_type* __p = std::__addressof(*__ptr);
2000  __builtin_memset(__p, 0, __n * sizeof(__bucket_type));
2001  return __p;
2002  }
2003 
2004  template<typename _NodeAlloc>
2005  void
2006  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts,
2007  std::size_t __n)
2008  {
2009  typedef typename __bucket_alloc_traits::pointer _Ptr;
2010  auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2011  __bucket_alloc_type __alloc(_M_node_allocator());
2012  __bucket_alloc_traits::deallocate(__alloc, __ptr, __n);
2013  }
2014 
2015  //@} hashtable-detail
2016 _GLIBCXX_END_NAMESPACE_VERSION
2017 } // namespace __detail
2018 } // namespace std
2019 
2020 #endif // _HASHTABLE_POLICY_H
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:101
constexpr _Tp && forward(typename std::remove_reference< _Tp >::type &__t) noexcept
Forward an lvalue.
Definition: move.h:76
Base class for node iterators.
Uniform interface to C++98 and C++0x allocators.
Common iterator class.
Forward iterators support a superset of input iterator operations.
constexpr piecewise_construct_t piecewise_construct
piecewise_construct
Definition: stl_pair.h:79
Marking input iterators.
Uniform interface to all pointer-like types.
Definition: ptr_traits.h:132
Uniform interface to all allocator types.
Default ranged hash function H. In principle it should be a function object composed from objects of ...
_Siter_base< _Iterator >::iterator_type __base(_Iterator __it)
Definition: functions.h:558
iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.
ISO C++ entities toplevel namespace is std.
_Tp * __addressof(_Tp &__r) noexcept
Same as C++11 std::addressof.
Definition: move.h:47
Default value for rehash policy. Bucket size is (usually) the smallest prime that keeps the load fact...
Node const_iterators, used to iterate through all the hashtable.
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:96
void swap(_Tp &, _Tp &) noexcept(__and_< is_nothrow_move_constructible< _Tp >, is_nothrow_move_assignable< _Tp >>::value)
Swaps two values.
Definition: move.h:166
Node iterators, used to iterate through all the hashtable.
Default range hashing function: use division to fold a large number into the range [0...
void advance(_InputIterator &__i, _Distance __n)
A generalization of pointer arithmetic.